• Skip to main content
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Bạn đang ở:Trang chủ / Tổng ôn Toán 12 / Tổng hợp lý thuyết công thức nguyên hàm từng phần – giải nhanh bài toán tìm nguyên hàm toán lớp 12

Tổng hợp lý thuyết công thức nguyên hàm từng phần – giải nhanh bài toán tìm nguyên hàm toán lớp 12

20/04/2022 by admin Để lại bình luận

Công thức nguyên hàm từng phần – giải nhanh bài toán tìm nguyên hàm

Nguyên hàm từng phần là gì?

Cho hai hàm số $u=u\left( x \right)$ và $v=v\left( x \right)$ có đạo hàm liên tục trên $K$ ta có công thức nguyên hàm từng phần: $\int{udv=uv-\int{vdu.}}$

Chú ý: Ta thường sử dụng phương pháp nguyên hàm từng phần nếu nguyên hàm có dạng $I=\int{f\left( x \right).g\left( x \right)dx,}$ trong đó $f\left( x \right)$ và $g\left( x \right)$ là 2 trong 4 hàm số: Hàm số logarit, hàm số đa thức, hàm số lượng giác, hàm số mũ.

Để tính nguyên hàm $\int{f\left( x \right).g\left( x \right)dx}$ từng phần ta làm như sau:

– Bước 1. Đặt $\left\{ \begin{array}  {} u=f\left( x \right) \\  {} dv=g\left( x \right)dx \\ \end{array} \right.\Rightarrow \left\{ \begin{array}  {} du=f’\left( x \right)dx \\  {} v=G\left( x \right) \\ \end{array} \right.$ (trong đó $G\left( x \right)$ là một nguyên hàm bất kỳ của hàm số $g\left( x \right)$)

– Bước 2. Khi đó theo công thức nguyên hàm từng phần ta có:

$\int{f\left( x \right).g\left( x \right)dx=f\left( x \right).G\left( x \right)-\int{G\left( x \right).f’\left( x \right)dx.}}$

Chú ý: Khi $I=\int{f\left( x \right).g\left( x \right)dx}$ và $f\left( x \right)$ và $g\left( x \right)$ là 2 trong 4 hàm số: Hàm số logarit, hàm số đa thức, hàm số lượng giác, hàm số mũ ta đặt theo quy tắc đặt $u.$

Nhất log (hàm log, ln) – Nhì đa (hàm đa thức)

Tam lượng (hàm lượng giác) – Tứ mũ (hàm mũ)

Tức là hàm số nào đứng trước trong câu nói trên ta sẽ đặt $u$ bằng hàm đó. Bài tập:

  • Nếu $f\left( x \right)$ là hàm log, $g\left( x \right)$ là một trong 3 hàm còn lại, ta sẽ đặt $\left\{ \begin{array}  {} u=f\left( x \right) \\  {} dv=g\left( x \right)dx \\ \end{array} \right..$
  • Tương tự nếu $f\left( x \right)$ là hàm mũ, $g\left( x \right)$ là hàm đa thức, ta sẽ đặt $\left\{ \begin{array}  {} u=g\left( x \right) \\  {} dv=f\left( x \right)dx \\ \end{array} \right.$

Một số dạng nguyên hàm từng phần thường gặp.

@ Dạng 1: $I=\int{P\left( x \right)\ln \left( mx+n \right)dx,}$ trong đó $P\left( x \right)$ là đa thức.

Theo quy tắc ta đặt $\left\{ \begin{array}  {} u=\ln \left( mx+n \right) \\  {} dv=P\left( x \right)dx \\ \end{array} \right..$

@ Dạng 2: $I=\int{P\left( x \right)\left[ \begin{array}  {} \sin x \\  {} \cos x \\ \end{array} \right]dx,}$ trong đó $P\left( x \right)$ là đa thức.

Theo quy tắc ta đặt $\left\{ \begin{array}  {} u=P\left( x \right) \\  {} dv=\left[ \begin{array}  {} \sin x \\  {} \cos x \\ \end{array} \right]dx \\ \end{array} \right..$

@ Dạng 3: $I=\int{P\left( x \right){{e}^{ax+b}}dx,}$ trong đó $P\left( x \right)$ là đa thức

Theo quy tắc ta đặt $\left\{ \begin{array}  {} u=P\left( x \right) \\  {} dv={{a}^{ax+b}}dx \\ \end{array} \right..$

@ Dạng 4: $I=\int{\left[ \begin{array}  {} \sin x \\  {} \cos x \\ \end{array} \right]{{e}^{x}}dx.}$

Theo quy tắc ta đặt $\left\{ \begin{array}  {} u=\left[ \begin{array}  {} \sin x \\  {} \cos x \\ \end{array} \right] \\  {} dv={{e}^{x}}dx \\ \end{array} \right..$

Thuộc chủ đề:Tổng ôn Toán 12 Tag với:NGUYEN HAM - TOAN 12

Bài liên quan:
  1. Tổng hợp lý thuyết bài tập tìm nguyên hàm của hàm số lượng giác có đáp án chi tiết cực hay. toán lớp 12
  2. Tổng hợp lý thuyết công thức nguyên hàm của hàm số lượng giác – tìm nguyên hàm của hàm số toán lớp 12
  3. Tổng hợp lý thuyết bài tập nguyên hàm của hàm hữu tỷ có đáp án chi tiết toán lớp 12
  4. Tổng hợp lý thuyết nguyên hàm của hàm hữu tỷ – các công thức giải nhanh bài tập tìm nguyên hàm toán lớp 12
  5. Tổng hợp lý thuyết bài tập nguyên hàm từng phần có đáp án chi tiết siêu hay. toán lớp 12
  6. Tổng hợp lý thuyết bài tập tìm nguyên hàm bằng cách đổi biến số (đặt x = hàm theo biến t) toán lớp 12
  7. Tổng hợp lý thuyết tìm nguyên hàm bằng cách đổi biến số hàm số vô tỉ (đặt t = hàm theo biến x) toán lớp 12
  8. Tổng hợp lý thuyết bài tập nguyên hàm cơ bản có lời giải chi tiết – vi phân toán lớp 12
  9. Tổng hợp lý thuyết phương pháp vi phân tìm nguyên hàm – giải mọi bài tập có đáp án chi tiết toán lớp 12
  10. Tổng hợp lý thuyết bài tập tìm nguyên hàm của hàm số bằng công thức nguyên hàm có đáp án chi tiết. toán lớp 12

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2022.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.