• Skip to main content
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Bạn đang ở:Trang chủ / Tổng ôn Toán 12 / Cách xác định điểm thuộc đồ thị hàm số liên quan đến yếu tố độ dài, khoảng cách

Cách xác định điểm thuộc đồ thị hàm số liên quan đến yếu tố độ dài, khoảng cách

16/04/2022 by admin Để lại bình luận

Xác định điểm thuộc đồ thị hàm số: liên quan đến yếu tố độ dài, khoảng cách

Phương pháp giải bài toán xác định điểm thuộc đồ thị hàm số

Điểm M thuộc đồ thị hàm số $y=f\left( x \right)\Rightarrow M\left( {{x}_{0}};f\left( {{x}_{0}} \right) \right)$.

§ Khoảng cách từ điểm M đến trục $Ox$ bằng: $d\left( M;Ox \right)=\left| f\left( {{x}_{0}} \right) \right|$.

§ Khoảng cách từ điểm M đến trục $Oy$ bằng: $d\left( M;Oy \right)=\left| {{x}_{0}} \right|$.

§ Khoảng cách từ điểm M đến đường thẳng $\Delta :ax+by+c=0$ là: $d\left( M;\Delta  \right)=\frac{\left| a{{x}_{0}}+b.f\left( {{x}_{0}} \right)+C \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}$.

§ Khoảng cách giữa hai điểm MN bằng $\sqrt{{{\left( {{x}_{M}}-{{x}_{N}} \right)}^{2}}+{{\left( {{y}_{M}}-{{y}_{N}} \right)}^{2}}}$.

Bài tập trắc nghiệm đồ thị hàm số có đáp án

Bài tập 1: Cho hàm số: $y=\frac{x+2}{x-1}\left( C \right)$. Tìm điểm M thuộc $\left( C \right)$ sao cho khoảng cách từ M đến đường thẳng $y=-x$ bằng $\sqrt{2}$.

Lời giải chi tiết

Gọi $M\left( a;\frac{a+2}{a-1} \right)\in \left( C \right),\,\left( a\ne 1 \right).$

Khoảng cách từ M đến đường thẳng $y=-x$ là: $d=\frac{\left| a+\frac{a+2}{a-1} \right|}{\sqrt{2}}=\sqrt{2}\Leftrightarrow \left| {{a}^{2}}+2 \right|=2\left| a-1 \right|$

$\Leftrightarrow \left[ \begin{array}{*{35}{l}}   {{a}^{2}}-2a+4=0  \\   {{a}^{2}}+2a=0  \\\end{array} \right.\Leftrightarrow {{a}^{2}}+2a=0\Leftrightarrow \left[ \begin{array}{*{35}{l}}   a=0\Rightarrow M\left( 0;-2 \right)  \\   a=-2\Rightarrow M\left( -2;0 \right)  \\\end{array} \right.$ 

Vậy tọa độ điểm M cần tìm là $M\left( 0;-2 \right)$ hoặc $M\left( -2;0 \right)$.

Bài tập 2: Cho hàm số $y=\frac{2x+1}{x-1}\left( C \right)$. Gọi M là điểm nằm trên đồ thị $\left( C \right)$ và $H,K$ tương ứng là hình chiếu vuông góc của M trên các trục $Ox$ và $Oy$. Có bao nhiêu điểm M thỏa mãn tứ giác $MHOK$ có diện tích bằng 2.

A. 0. B. 1. C. 2. D. 4.

Lời giải chi tiết

Gọi $M\left( a;\frac{2a+1}{a-1} \right)\in \left( C \right)\,\left( a\ne 1 \right)$. Tứ giác $MHOK$ là hình chữ nhật.

Ta có: ${{S}_{MHOK}}=MH.MK=d\left( M;Ox \right).d\left( M;Oy \right)$

$=\left| a \right|.\left| \frac{2a+1}{a-1} \right|=\left| \frac{2{{a}^{2}}+a}{a-1} \right|=2\Leftrightarrow \left[ \begin{array}{*{35}{l}}   2{{a}^{2}}+a=2a-2  \\   2{{a}^{2}}+a=-2a+2  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   2{{a}^{2}}-a+2=0  \\   2{{a}^{2}}+3a-2=0  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   a=\frac{1}{2}  \\   a=-2  \\\end{array} \right.$ 

Vậy $M\left( \frac{1}{2};4 \right)$ hoặc $M\left( -2:1 \right)$. Chọn C.

Bài tập 3: Cho hàm số $y=\frac{-x-1}{x-1}\left( C \right)$. Có bao nhiêu điểm $M\in \left( C \right)$ để khoảng cách từ M đến đường thẳng $\Delta :y=2x-1$ bằng $\frac{3}{\sqrt{5}}$.

A. 0. B. 1. C. 2. D. 4.

Lời giải chi tiết

Gọi $M\left( a;\frac{-a-1}{a-1} \right)\in \left( C \right)\,\left( a\ne 1 \right)$. Ta có: $\Delta :2x-y-1=0\Rightarrow d\left( M;\Delta  \right)=\frac{\left| 2a+\frac{a+1}{a-1}-1 \right|}{\sqrt{5}}=\frac{3}{\sqrt{5}}$

$\Leftrightarrow \left| 2{{a}^{2}}-2a+2 \right|=3\left| a-1 \right|\Leftrightarrow \left[ \begin{array}{*{35}{l}}   2{{a}^{2}}-2a+2=3a-3  \\   2{{a}^{2}}-2a+2=-3a+3  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   2{{a}^{2}}-5a+5=0  \\   2{{a}^{2}}+a-1=0  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   a=\frac{1}{2}  \\   a=-1  \\\end{array} \right.$ 

Vậy có 2 điểm M thỏa mãn yêu cầu bài toán. Chọn C.

Bài tập 4: Cho hàm số $y={{x}^{3}}-2x+1$. Tìm tất cả các điểm M thuộc đồ thị hàm số sao cho khoảng cách từ M đến trục tung bằng 1.

A. $M\left( 1;0 \right)$ hoặc $M\left( -1;2 \right)$. B. $M\left( 0;1 \right)$ hoặc $M\left( 2;-1 \right)$.

C. $M\left( 1;0 \right)$.  D. $M\left( 2;-1 \right)$.

Lời giải chi tiết

Khoảng cách từ M đến trục tung bằng 1, suy ra $\left[ \begin{array}{*{35}{l}}   {{x}_{M}}=1\Rightarrow {{y}_{M}}=0  \\   {{x}_{M}}=-1\Rightarrow {{y}_{M}}=2  \\\end{array} \right.\Rightarrow \left[ \begin{array}{*{35}{l}}   M\left( 1;0 \right)  \\   M\left( -1;2 \right)  \\\end{array} \right.$

Chọn A.

Bài tập 5: Cho hàm số $y={{x}^{3}}-3x$ có đồ thị $\left( C \right)$ và điểm $K\left( 1;-3 \right)$. Biết điểm $M\left( x;y \right)$ trên $\left( C \right)$ thỏa mãn ${{x}_{M}}\ge -1$ và độ dài $KM$ nhỏ nhất. Tìm phương trình đường thẳng $OM$.

A. $y=2x.$  B. $y=-x.$  C. $y=\sqrt{3}x.$  D. $y=-2x.$

Lời giải chi tiết

Điểm $M\left( x;y \right)\in \left( C \right)\Rightarrow M\left( x;{{x}^{3}}-3x \right)$ với $x\ge -1$.

Ta có $\overline{KM}=\left( x-1;{{x}^{3}}-3x+3 \right)\Rightarrow KM=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( {{x}^{3}}-3x+3 \right)}^{2}}}$. Đặt $f\left( x \right)={{\left( x-1 \right)}^{2}}+{{\left( {{x}^{3}}-3x+3 \right)}^{2}}.$

Xét hàm số $f\left( x \right)$ trên đoạn $\left[ -1;+\infty  \right)$, ta có ${f}’\left( x \right)=2\left( x-1 \right)+6\left( {{x}^{2}}-1 \right)\left( {{x}^{3}}-3x+3 \right);\,\forall x\ge -1.$

Phương trình ${f}’\left( x \right)=0\Leftrightarrow \left( x-1 \right).\underbrace{\left[ 1+3\left( x+1 \right)\left( {{x}^{3}}-3x+3 \right) \right]}_{g\left( x \right)}=0\Leftrightarrow x=1$ vì $g\left( x \right)\ge 0;\,\forall x\ge -1.$

Giá trị nhỏ nhất của $f\left( x \right)$ bằng 1. Dấu$”=”$ xảy ra khi $x=1\Rightarrow M\left( 1;-2 \right)\Rightarrow \left( OM \right):y=-2x.$

Chọn D.

Bài tập 6: Cho hàm số $y=\frac{2x-1}{x+1}\,\left( C \right)$. Tổng khoảng cách từ một điểm M trên $\left( C \right)$ đến hai đường tiệm cận đạt giá trị nhỏ nhất là bao nhiêu? 

A. $2\sqrt{3}.$  B. $2.$  C. $4.$  D. $4\sqrt{3}.$ 

Lời giải chi tiết

Gọi điểm $M\left( a;\frac{2a-1}{a+1} \right)\in \left( C \right)$. Hai đường tiệm cận của $\left( C \right)$ là $x=-1$ và $y=2.$ 

Suy ra khoảng cách từ M đến hai đường tiệm cận bằng $\left\{ \begin{array}{*{35}{l}}   {{d}_{1}}=d\left( M,x=-1 \right)=\left| a+1 \right|  \\   {{d}_{2}}=d\left( M,y=2 \right)=\frac{3}{\left| a+1 \right|}  \\\end{array}. \right.$ 

Khi đó tổng khoảng cách sẽ bằng $d={{d}_{1}}+{{d}_{2}}=\left| a+1 \right|+\frac{3}{\left| a+1 \right|}\ge 2\sqrt{\left| a+1 \right|.\frac{3}{\left| a+1 \right|}}=2\sqrt{3}.$

Chọn A.

Bài tập 7: Tìm tất cả những điểm thuộc trục hoành cách đều hai điểm cực trị của đồ thị hàm số $y={{x}^{3}}-3{{x}^{2}}+2$.

A. $M\left( -1;0 \right).$  B. $M\left( 1;0 \right).$ C. $M\left( 2;0 \right).$ D. $M\left( 1;0 \right).$

Lời giải chi tiết

Ta có: ${y}’=3{{x}^{2}}-6x=0\Leftrightarrow \left[ \begin{array}{*{35}{l}}   x=0\Rightarrow y=2  \\   x=2\Rightarrow y=-2  \\\end{array} \right.\Rightarrow A\left( 0;2 \right);B\left( 2;-2 \right)$. Gọi $M\left( t;0 \right)$

Khi đó $M{{A}^{2}}=M{{B}^{2}}\Leftrightarrow {{t}^{2}}+4={{\left( t-2 \right)}^{2}}+4\Leftrightarrow t=1\Rightarrow M\left( 1;0 \right)$.

Chọn D.

Bài tập 8: Có bao nhiêu điểm M thuộc đồ thị hàm số $y=\frac{x+2}{x-1}$ mà khoảng cách từ M đến trục $Oy$bằng hai lần khoảng cách từ M đến trục $Ox$?

A. 0. B. 1. C. 2. D. 3.

Lời giải chi tiết

Gọi $M\left( a;\frac{a+2}{a-1} \right)\left( a\ne 1 \right)\in $ đồ thị hàm số đã cho.

Ta có: $d\left( M;Oy \right)=\left| a \right|;d\left( M;Ox \right)=\left| \frac{a+2}{a-1} \right|$

Theo giả thiết ta có: $\left| \frac{a+2}{a-1} \right|=2\left| a \right|\Leftrightarrow \left[ \begin{array}{*{35}{l}}   \frac{a+2}{a-1}=2a  \\   \frac{a+2}{a-1}=-2a  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   2{{a}^{2}}-3a-2=0  \\   -2{{a}^{2}}+a-2=0  \\\end{array} \right.\Leftrightarrow a=2;a=-\frac{1}{2}$ 

Vậy có 2 điểm $A\left( 2;4 \right)$ và $B\left( -\frac{1}{2};-1 \right)$. Chọn C.

Bài tập 9: Tìm trên đồ thị hàm số $y=\frac{2x+1}{x-1}$ những điểm $M$ sao cho khoảng cách từ $M$ đến tiệm cận đứng bằng ba lần khoảng cách từ $M$ đến tiệm cận ngang của đồ thị.

A. $M\left( -4;\frac{7}{5} \right)$ hoặc $M\left( 2;5 \right)$. B. $M\left( 4;3 \right)$ hoặc $M\left( -2;1 \right).$              

C. $M\left( 4;3 \right)$ hoặc $M\left( 2;5 \right).$  D. $M\left( -4;\frac{7}{5} \right)$ hoặc $M\left( -2;1 \right)$.

Lời giải chi tiết

Tiệm cận đứng: $x=1$. Tiệm cận ngang $y=2$. Gọi $M\left( a;\frac{2a+1}{a-1} \right)$

Khi đó: $d\left( M;TCN \right)=\left| \frac{2a+1}{a-1}-2 \right|=\frac{3}{\left| a-1 \right|},\,d\left( M;TCD \right)=\left| a-1 \right|.$

Theo bài ra ta có: $\left| a-1 \right|=3.\frac{3}{\left| a-1 \right|}\Leftrightarrow {{\left( a-1 \right)}^{2}}=9\Leftrightarrow \left[ \begin{array}{*{35}{l}}   a=4\Rightarrow M\left( 4;3 \right)  \\   a=-2\Rightarrow M\left( -2;1 \right)  \\\end{array} \right..$ 

Chọn B.

Bài tập 10: Giả sử đường thẳng $d:x=a,a>0$ cắt đồ thị hàm số $y=\frac{2x+1}{x-1}$ tại một điểm duy nhất, biết khoảng cách từ điểm đó đến tiệm cận đứng của đồ thị hàm số bằng 1; ký hiệu $\left( {{x}_{0}};{{y}_{0}} \right)$ là tọa độ của điểm đó. Tìm ${{y}_{0}}$.

A. ${{y}_{0}}=-1.$  B. ${{y}_{0}}=5.$  C. ${{y}_{0}}=1.$  D. ${{y}_{0}}=2.$ 

Lời giải chi tiết

Gọi $M\left( a;\frac{2a+1}{a-1} \right)\,\left( a>0 \right)$ là điểm cần tìm. TCĐ của đồ thị hàm số đã cho là: $x=1$

Khi đó $d\left( M;x=1 \right)=1\Leftrightarrow \left| a-1 \right|=1\xrightarrow{a>0}a=2\Rightarrow {{y}_{0}}=\frac{2a+1}{a-1}=5$.

Chọn B.

Bài tập 11: Cho hàm số $y=\frac{x+1}{x-2}\left( C \right)$. Gọi $M$ là điểm thuộc $\left( C \right)$ sao cho tích khoảng cách từ điểm $M$ đến trục $Ox$ và đến đường tiệm cận ngang bằng 6. Tổng hoành độ các điểm $M$ thỏa mãn yêu cầu bài toán bằng

A. $-1.$  B. $\frac{9}{2}.$  C. $8.$  D. $4.$ 

Lời giải chi tiết

Gọi $M\left( a;\frac{a+1}{a-2} \right)\left( a\ne 2 \right)$. TCĐ: $x=2$ và TCN: $y=1$

a) Ta có: $d\left( M;Ox \right)=\left| \frac{a+1}{a-2} \right|={{d}_{1}}$; $d\left( M;TCN:y=1 \right)=\left| \frac{a+1}{a-2}-1 \right|=\frac{3}{\left| a-2 \right|}={{d}_{2}}$

Theo bài ra ta có: ${{d}_{1}}{{d}_{2}}=\left| \frac{3\left( a+1 \right)}{{{\left( a-2 \right)}^{2}}} \right|=6\Leftrightarrow \left[ \begin{array}{*{35}{l}}   \frac{a+1}{{{\left( a-2 \right)}^{2}}}=2  \\   \frac{a+1}{{{\left( a-2 \right)}^{2}}}=-2  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   2{{a}^{2}}-9a+7=0  \\   2{{a}^{2}}-7a+9=0  \\\end{array} \right.\Leftrightarrow \left[ \begin{array}{*{35}{l}}   a=1\Rightarrow M\left( 1;-2 \right)  \\   a=\frac{7}{2}\Rightarrow M\left( \frac{7}{2};3 \right)  \\\end{array} \right.$ 

Vậy $M\left( 1;-2 \right)$ hoặc $M\left( \frac{7}{2};3 \right)$ là các điểm cần tìm. Chọn B.

Thuộc chủ đề:Tổng ôn Toán 12 Tag với:Tap hop diem - HAM SO - TOAN 12

Bài liên quan:
  1. Tổng hợp lý thuyết bài toán tìm điểm cố định và điểm có tọa độ nguyên thuộc đồ thị hàm số toán lớp 12
  2. Tổng hợp lý thuyết bài toán tìm điểm kết hợp bài toán tương giao và tiếp tuyến toán lớp 12
  3. Tổng hợp lý thuyết bài toán tìm 2 điểm liên quan đến yếu tố đối xứng, yếu tố khoảng cách toán lớp 12

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2022.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.