• Skip to main content
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Bạn đang ở:Trang chủ / Tổng ôn Toán 12 / Tổng hợp lý thuyết cách giải bài toán tính thể tích một số khối chóp đặc biệt toán lớp 12

Tổng hợp lý thuyết cách giải bài toán tính thể tích một số khối chóp đặc biệt toán lớp 12

24/04/2022 by admin Để lại bình luận

Cách giải bài toán tính Thể tích một số khối chóp đặc biệt

Khối chóp có các cạnh bên bằng nhau

Cho khối chóp $S.{{A}_{1}}{{A}_{2}}…{{A}_{n}}$ có tất cả các cạnh bên bằng nhau: $S{{A}_{1}}=S{{A}_{2}}=…=S{{A}_{n}}$.

Dựng đường cao $SH\bot \left( {{A}_{1}}{{A}_{2}}{{A}_{n}} \right)$ của khối chóp.

41.jpg

Khi đó theo định lý Pytago  ta có:

$S{{H}^{2}}=S{{A}_{1}}^{2}-H{{A}_{1}}^{2}=S{{A}_{2}}^{2}-H{{A}_{2}}^{2}=….=S{{A}_{n}}^{2}-H{{A}_{n}}^{2}$.

Lại có $S{{A}_{1}}=S{{A}_{2}}=…=S{{A}_{n}}$ suy ra $H{{A}_{1}}=H{{A}_{2}}=…=H{{A}_{n}}$.

Như vậy: Hình chiếu vuông góc của đỉnh S xuống mặt đáy trùng với tâm đường tròn ngoại tiếp của đa giác ${{A}_{1}}{{A}_{2}}…{{A}_{n}}$.

Khi đó $SH=h={{R}_{}}\tan \alpha $.

Khối chóp có các cạnh bên tạo với đáy các góc bằng nhau

42.jpg

Cho khối chóp $S.{{A}_{1}}{{A}_{2}}…{{A}_{n}}$ có tất cả các cạnh bên đều tạo với đáy một góc $\alpha $.

Dựng đường cao $SH\bot \left( {{A}_{1}}{{A}_{2}}{{A}_{n}} \right)$ của khối chóp.

Khi đó: $\widehat{S{{A}_{1}}H}=\widehat{S{{A}_{2}}H}=….=\widehat{S{{A}_{n}}H}=\alpha $suy ra

$SH=H{{A}_{1}}\tan \alpha =H{{A}_{2}}\tan \alpha =….=H{{A}_{n}}\tan \alpha $.

Do đó $H{{A}_{1}}=H{{A}_{2}}=…=H{{A}_{n}}$ suy ra hình chiếu vuông góc của đỉnh S xuống mặt đáy trùng với tâm đường tròn ngoại tiếp của đa giác ${{A}_{1}}{{A}_{2}}…{{A}_{n}}$.

Khi đó $SH=h={{R}_{}}\tan \alpha $.

Khối chóp có các mặt bên đều tạo với đáy các góc bằng nhau

43.jpg

Cho khối chóp $S.{{A}_{1}}{{A}_{2}}…{{A}_{n}}$ có tất cả các mặt bên đều tạo với đáy một góc$\alpha $

Dựng đường cao $SH\bot \left( {{A}_{1}}{{A}_{2}}{{A}_{n}} \right)$ của khối chóp. Dựng

$H{{K}_{1}}\bot {{A}_{1}}{{A}_{2}}$,$H{{K}_{2}}\bot {{A}_{2}}{{A}_{3}}$,… ,$H{{K}_{n}}\bot {{A}_{n}}{{A}_{1}}$

Do $\left\{ \begin{array}  {} H{{K}_{1}}\bot {{A}_{1}}{{A}_{2}} \\  {} {{A}_{1}}{{A}_{2}}\bot SH \\ \end{array} \right.\Rightarrow {{A}_{1}}{{A}_{2}}\bot \left( S{{K}_{1}}H \right)\Rightarrow \widehat{S{{K}_{1}}H}=\alpha $.

Tương tự như vậy ta có: $\overset\frown{S{{K}_{1}}H}=\overset\frown{S{{K}_{2}}H}=….=\overset\frown{S{{K}_{n}}H}=\alpha $.

Suy ra $SH=H{{K}_{1}}\tan \alpha =H{{K}_{2}}\tan \alpha ….=H{{K}_{n}}\tan \alpha $ do đó

$H{{K}_{1}}=H{{K}_{2}}=…=H{{K}_{n}}$.

Suy ra điểm H trùng với tâm đường tròn tiếp xúc với tất cả các cạnh (hay đường tròn nội tiếp) của đa giác${{A}_{1}}{{A}_{2}}…{{A}_{n}}$.

Khi đó $SH=h={{r}_{}}\tan \alpha $.

 

Bài tập trắc nghiệm tính thể tích khối chóp đặc biệt có đáp án chi tiết

Bài tập 1: Cho hình chóp S.ABC có đáy là tam giác ABC, các cạnh bên SA=SB=SC= $a$. Biết rằng $\widehat{ASB}=\widehat{BSC}=60{}^\circ $, $\widehat{ASC}=90{}^\circ $. Thể tích khối chóp đã cho là:

A.V=  $\frac{{{a}^{3}}\sqrt{3}}{6}$.                    B. V=  $\frac{{{a}^{3}}\sqrt{2}}{6}$.                         C. V= $\frac{{{a}^{3}}\sqrt{2}}{12}$.                          D.V=$\frac{{{a}^{3}}\sqrt{3}}{12}$.

Lời giải chi tiết:

4.1.jpg

Dễ thấy các tam giác ASB, BSC là tam giác đều do đó AB = BC =$a$.

Mặt khác:$AC=\sqrt{S{{A}^{2}}+S{{C}^{2}}}=a\sqrt{2}=\sqrt{A{{B}^{2}}+B{{C}^{2}}}$

Do đó tam giác ABC vuông tại B.

Mặt khác SA = SB = SC =$a$ nên hình chiếu vuông góc của đỉnh S xuống mặt đáy là tâm đường tròn ngoại tiếp tam giác ABC và là trung điểm của cạnh huyền AC.

Ta có: $SH=\frac{a\sqrt{2}}{2}$; ${{S}_{ABC}}=\frac{{{a}^{2}}}{2}$$\Rightarrow $${{V}_{S.ABC}}=\frac{{{a}^{3}}\sqrt{2}}{12}$.

Chọn C.

 

 

Bài tập 2: Cho hình chóp S.ABC có đáy là tam giác ABC, các cạnh bên SA=SB=SC= $a$. Biết rằng $\widehat{ASB}=60{}^\circ $,$\widehat{BSC}=90{}^\circ $, $\widehat{ASC}=120{}^\circ $. Thể tích khối chóp đã cho là:

A.V=  $\frac{{{a}^{3}}\sqrt{3}}{6}$.                       B. V=  $\frac{{{a}^{3}}\sqrt{2}}{6}$.                          C. V= $\frac{{{a}^{3}}\sqrt{2}}{12}$.                         D.V=$\frac{{{a}^{3}}\sqrt{3}}{12}$.

Lời giải chi tiết:

4.2.jpg

Tam giác SAB đều nên AB=$a$ , $\Delta $SBC vuông tại S nên $BC=\sqrt{S{{B}^{2}}+S{{C}^{2}}}=a\sqrt{2}$.

Mặt khác $AC=\sqrt{S{{A}^{2}}+S{{C}^{2}}-2SA.SC\cos \widehat{ASC}}=a\sqrt{3}$

Do $A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}$nên tam giác ABC vuông tại B.

Mặt khác SA=SB=SC= $a$ nên hình chiếu vuông góc của đỉnh S xuống mặt đáy là tâm đường tròn ngoại tiếp tam giác ABC và là trung điểm của cạnh huyền AC.

Ta có: ${{S}_{ABC}}=\frac{{{a}^{2}}\sqrt{2}}{2}$, $SH=\sqrt{S{{A}^{2}}-H{{A}^{2}}}=\frac{a}{2}$.

$\Rightarrow $${{V}_{S.ABC}}=\frac{1}{3}SH.{{S}_{ABC}}=\frac{{{a}^{3}}\sqrt{2}}{12}$. Chọn C.

 

 

Bài tập 3: Cho hình chóp S.ABC có đáy là tam giác ABC, có AB=AC= $a$, $\widehat{BAC}=120{}^\circ $. Các cạnh bên đều tạo với đáy một góc $60{}^\circ $.Thể tích khối chóp S.ABC là:

A.V= $\frac{{{a}^{3}}}{4}$ .                      B. V=$\frac{{{a}^{3}}\sqrt{3}}{4}$ .              C. V=$\frac{{{a}^{3}}\sqrt{3}}{8}$.                      D.V=$\frac{{{a}^{3}}\sqrt{3}}{12}$.

Lời giải chi tiết: 

Diện tích tam giác ABC là: ${{S}_{ABC}}=\frac{1}{2}AB.AC.\sin \widehat{BAC}=\frac{{{a}^{2}}\sqrt{3}}{4}$.

Do các cạnh bên đều tạo với đáy một góc bằng $60{}^\circ $$\Rightarrow $  hình chiếu vuông góc của đỉnh S xuống mặt đáy là tâm đường tròn ngoại tiếp tam giác ABC.

Lại có:$BC=\sqrt{A{{B}^{2}}+A{{C}^{2}}-2AB.AC\cos \widehat{BAC}}=a\sqrt{3}\Rightarrow {{R}_{ABC}}=\frac{BC}{2\sin A}=\frac{a\sqrt{3}}{2\sin 120{}^\circ }=a$.

Suy ra $SH={{R}_{ABC}}.\tan 60{}^\circ =a\sqrt{3}$$\Rightarrow $${{V}_{S.ABC}}=\frac{1}{3}SH.{{S}_{ABC}}=\frac{{{a}^{3}}}{4}$. Chọn A.

Bài tập 4: Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B có AB = 3, BC = 4. Biết rằng các mặt bên của khối chóp đều tạo với đáy một góc bằng nhau và bằng $60{}^\circ $. Thể tích khối chóp đã cho là

A.V= $\frac{5\sqrt{3}}{3}$ .                 B. V=$\frac{5\sqrt{3}}{6}$ .                       C. V=$\frac{5\sqrt{3}}{2}$.                               D.V=$\frac{5\sqrt{3}}{12}$.

Lời giải chi tiết:

4.4.jpg

Ta có: H là tâm đường tròn nội tiếp tam giác ABC.

Lại có $p.r={{S}_{ABC}}$.

Trong đó ${{S}_{ABC}}=\frac{1}{2}AB.BC=6$;$AC=\sqrt{A{{B}^{2}}+B{{C}^{2}}}=5$

Suy ra $p=\frac{AB+BC+CA}{2}=6\Rightarrow r=\frac{5}{6}=HK$.

Khi đó $SH=r\tan 60{}^\circ =\frac{5\sqrt{3}}{6}$

Do đó $V=\frac{1}{3}SH.{{S}_{ABC}}=\frac{5\sqrt{3}}{3}$. Chọn A.

 

 

Bài tập 5: Cho hình chóp S.ABC có đáy là tam giác ABC cân tại A có AB = AC= 10, BC= 12. Các mặt bên của khối chóp đều tạo với đáy một góc bằng nhau và bằng ${{30}^{o}}$. Thể tích khối chóp đã cho là

  1. $18\sqrt{3}$.                         B. $48\sqrt{3}$.                             C. $16\sqrt{3}$.                                D.$9\sqrt{3}$.

Lời giải chi tiết:

4.5.jpg

Do các mặt bên của khối chóp đều tạo với đáy một góc bằng nhau nên hình chiếu vuông góc của đỉnh S xuống mặt đáy trùng với tâm đường tròn nội tiếp tam giác ABC.

Gọi M là trung điểm của BC$\Rightarrow $AM $\bot $BC

Ta có:$AM=\sqrt{A{{B}^{2}}-B{{M}^{2}}}=\sqrt{{{10}^{2}}-{{6}^{2}}}=8$.

Khi đó: ${{S}_{ABC}}=\frac{1}{2}AM.BC=48\Rightarrow {{r}_{ABC}}=\frac{S}{p}=\frac{48}{\frac{10+10+12}{2}}=3$$\Rightarrow SH=r\tan 30{}^\circ =\sqrt{3}$$\Rightarrow $$V=\frac{1}{3}SH.{{S}_{ABC}}=16\sqrt{3}$.Chọn C.

 

 

..

Thuộc chủ đề:Tổng ôn Toán 12 Tag với:THE TICH DA DIEN - TOAN 12

Bài liên quan:
  1. Tổng hợp lý thuyết bài tập trắc nghiệm tỉ số thể tích khối lăng trụ có đáp án chi tiết toán lớp 12
  2. Tổng hợp lý thuyết bài tập trắc nghiệm tỉ số thể tích của khối chóp có đáp án chi tiết toán lớp 12
  3. Tổng hợp lý thuyết công thức tỷ số thể tích, định lý simson đầy đủ các kỹ thuật giải nhanh toán lớp 12
  4. Tổng hợp lý thuyết bài tập tính thể tích khối lăng trụ xiên có đáp án chi tiết toán lớp 12
  5. Tổng hợp lý thuyết cách tính thể tích khối lăng trụ đứng- bài tập có đáp án chi tiết toán lớp 12
  6. Tổng hợp lý thuyết cách giải tính thể tích khối chóp đều – bài tập đáp án chi tiết toán lớp 12
  7. Tổng hợp lý thuyết bài tập tính thể tích khối chóp có mặt bên vuông góc với đáy có đáp án chi tiết toán lớp 12
  8. Tổng hợp lý thuyết bài tập thể tích khối chóp có đường cao sẵn có – có đáp án chi tiết toán lớp 12

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2022.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.