• Skip to main content
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Bạn đang ở:Trang chủ / Tổng ôn Toán 12 / Tổng hợp lý thuyết bài tập tính góc giữa cạnh bên và mặt bên có đáp án chi tiết toán lớp 12

Tổng hợp lý thuyết bài tập tính góc giữa cạnh bên và mặt bên có đáp án chi tiết toán lớp 12

23/04/2022 by admin Để lại bình luận

Bài tập tính Góc giữa cạnh bên và mặt bên có đáp án chi tiết

Phương pháp xác định góc

Tính góc giữa cạnh bên SC và mặt phẳng (SAB). Đặt $\widehat{\left( SC;\left( SAB \right) \right)}=\varphi \left( 0{}^\circ \le \varphi \le 90{}^\circ  \right).$

Ta có công thức: $\sin \varphi =\frac{d\left( C;\left( SAB \right) \right)}{SC}.$

Từ đó suy ra các giá trị $\cos \varphi $ hoặc $\tan \varphi $ nếu đề bài yêu cầu.

Bài tập về góc trong không gian có đáp án chi tiết

Bài tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có $AD=2a,AB=a\sqrt{2}$. Tam giác SAD cân tại S và thuộc mặt phẳng vuông góc với đáy. Đường thẳng SB tạo với đáy một góc $30{}^\circ $. Tính sin góc tạo bởi:

a) SA và mặt phẳng (SBC).

b) SD và mặt phẳng (SAC).

Lời giải chi tiết

Gọi H là trung điểm của AD ta có: $SH\bot AD$

Lại có: $\left( SAD \right)\bot \left( ABCD \right)\Rightarrow SH\bot \left( ABCD \right).$

Ta có: $HA=a;HB=\sqrt{H{{A}^{2}}+A{{B}^{2}}}=a\sqrt{3}$

Do $SH\bot \left( ABCD \right)\Rightarrow \widehat{\left( SB;\left( ABCD \right) \right)}=\widehat{SBH}=30{}^\circ $

Suy ra $SH=HB\tan 30{}^\circ =a.$

a) Do $AD//BC\Rightarrow AD//\left( SBC \right).$

Do vậy $d\left( A;\left( SBC \right) \right)=d\left( H;\left( SBC \right) \right).$

Dựng $\left\{ \begin{array}  {} HE\bot BC \\  {} HF\bot SE \\ \end{array} \right.$ tacó: $BC\bot HF$ từ đó suy ra $HF\bot \left( SBC \right)$

$\Rightarrow d\left( H;\left( SBC \right) \right)=HF=d\left( A;\left( SBC \right) \right).$ Ta có: $SA=\sqrt{S{{H}^{2}}+S{{A}^{2}}}=a\sqrt{2}=SD.$

Mặt khác: $\frac{1}{H{{F}^{2}}}=\frac{1}{S{{H}^{2}}}+\frac{1}{H{{E}^{2}}}\Rightarrow HF=\frac{a\sqrt{6}}{3}\Rightarrow \sin \widehat{\left( SA;\left( SBC \right) \right)}=\frac{d\left( A;\left( SBC \right) \right)}{SA}=\frac{\sqrt{3}}{3}.$

b) Dựng $HN\bot AC\Rightarrow AC\bot \left( SHN \right)$, dựng $HI\bot SN\Rightarrow HI\bot \left( SAC \right)$

Do $\frac{DA}{HA}=2=\frac{d\left( D;\left( SAC \right) \right)}{d\left( H;\left( SAC \right) \right)}\Rightarrow d\left( D;\left( SAC \right) \right)=2d\left( H;\left( SAC \right) \right)=2HI$

Dựng $DM\bot AC\Rightarrow DM=\frac{2a\sqrt{2}}{\sqrt{6}}\Rightarrow HN=\frac{a}{\sqrt{3}}\Rightarrow HI=\frac{HN.SH}{\sqrt{H{{N}^{2}}+S{{H}^{2}}}}=\frac{a}{2}\Rightarrow d\left( D;\left( SAC \right) \right)=a.$

Ta có: $\sin \widehat{\left( SD;\left( SAC \right) \right)}=\frac{d\left( D;\left( SAC \right) \right)}{SD}=\frac{a}{a\sqrt{2}}=\frac{1}{\sqrt{2}}.$

Bài tập 2: Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có $AB=a\sqrt{3};AD=a$, tam giác SBD là tam giác vuông cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính sin góc tạo bởi SA và mặt phẳng (SBC).

Lời giải chi tiết

Gọi O là trung điểm của BD ta có: $SO\bot BC$ mặt khác $\left( SBD \right)\bot \left( ABC \right)\Rightarrow SO\bot \left( ABC \right)$

Ta có: $BD=\sqrt{A{{B}^{2}}+A{{D}^{2}}}=2a\Rightarrow SO=\frac{1}{2}BD=a.$

Dựng $OE\bot BC,OF\bot SE\Rightarrow OF\bot \left( SBC \right).$

$d\left( D;\left( SBC \right) \right)=2d\left( O;\left( SBC \right) \right)=2HF$

Ta có: $HE=\frac{1}{2}AB=\frac{a\sqrt{3}}{2}$

$\Rightarrow OF=\frac{SH.OE}{\sqrt{S{{H}^{2}}+O{{E}^{2}}}}=a\sqrt{\frac{3}{7}}=\frac{a\sqrt{21}}{7}$

Suy ra $d\left( A;\left( SBC \right) \right)=\frac{2a\sqrt{21}}{7}.$ Mặt khác $SA=\sqrt{S{{O}^{2}}+O{{A}^{2}}}=a\sqrt{2}.$

Do đó $\sin \widehat{\left( SA;\left( SBC \right) \right)}=\frac{d\left( A;\left( SBC \right) \right)}{SA}=\frac{\sqrt{42}}{7}.$

 

Bài tập 3: Cho hình lăng trụ $ABC.{A}'{B}'{C}’$ có đáy là tam giác vuông tại A với $AB=a;AC=a\sqrt{3}$, hình chiếu vuông góc của ${A}’$ lên mặt đáy trùng với trung điểm H của BC. Biết ${A}’H=a\sqrt{2}$. Tính cosin góc tạo bởi ${A}’B$ với mặt phẳng $\left( AC{C}'{A}’ \right)$.

Lời giải chi tiết

Dựng $HE\bot AC$ và $HF\bot {A}’E$

Ta có: $\left\{ \begin{array}  {} AC\bot {A}’H \\  {} AC\bot HE \\ \end{array} \right.\Rightarrow AC\bot HF\Rightarrow HF\bot \left( A{A}’C \right).$

Khi đó $d\left( H;\left( {A}’AC \right) \right)=HF.$

Lại có $BC=2HC$ nên $d\left( B;\left( A{A}’C \right) \right)=2d\left( H;\left( A{A}’C \right) \right).$

Mặt khác ME là đường trung bình trong tam giác ABC

nên $ME=\frac{AB}{2}=\frac{a}{2}.$ Khi đó: $HF=\frac{HE.{A}’M}{\sqrt{H{{E}^{2}}+{A}'{{M}^{2}}}}=\frac{a\sqrt{2}}{3}$

Suy ra $d\left( B;\left( A{A}’C \right) \right)=\frac{2a\sqrt{2}}{3};BC=\sqrt{A{{B}^{2}}+A{{C}^{2}}}=2a.$

Lại có ${A}’B=\sqrt{{A}'{{H}^{2}}+H{{B}^{2}}}=a\sqrt{3}.$

Suy ra $\sin \widehat{\left( {A}’B;\left( {A}’AC \right) \right)}=\sin \varphi =\frac{d\left( B;\left( {A}’AC \right) \right)}{B{A}’}=\frac{2\sqrt{6}}{9}\Rightarrow \cos \varphi =\sqrt{1-{{\sin }^{2}}\varphi }=\frac{\sqrt{57}}{9}.$

 

Thuộc chủ đề:Tổng ôn Toán 12 Tag với:HINH HOC KHONG GIAN - TOAN 12

Bài liên quan:
  1. Bài tập bài toán thực thế hình học không gian thường ra trong đề thi – Có đáp án chi tiết
  2. Tổng hợp lý thuyết cách giải cực trị hình không gian hay – bài tập có đáp án chi tiết toán lớp 12
  3. Tổng hợp lý thuyết cách tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc toán lớp 12
  4. Tổng hợp lý thuyết cách tính khoảng cách giữa hai đường thẳng chéo nhau toán lớp 12
  5. Cách tính Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song
  6. Tổng hợp lý thuyết cách tính khoảng cách từ một điểm bất kỳ đến mặt bên -bài tập có đáp án toán lớp 12
  7. Tổng hợp lý thuyết cách tính khoảng cách từ chân đường cao đến mặt phẳng bên. toán lớp 12
  8. Tổng hợp lý thuyết tính khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao toán lớp 12
  9. Tổng hợp lý thuyết bài tập sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng toán lớp 12
  10. Tổng hợp lý thuyết cách tính nhanh góc giữa hai mặt bên có đáp án chi tiết toán lớp 12

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2022.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.