• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / LÝ THUYẾT MÔN TOÁN - ĐGTD ĐH BÁCH KHOA HN / Lý thuyết phần logarit thi ĐGTD Bách khoa

Lý thuyết phần logarit thi ĐGTD Bách khoa

07/04/2022 by Thầy Đồ Để lại bình luận

I. Logarit – Định nghĩa và tính chất

1. Định nghĩa

Với \(a > 0;a \ne 1,b > 0\) thì \({\log _a}b = N \Leftrightarrow b = {a^N}\). Số \({\log _a}b\) được gọi là lôgarit cơ số \(a\) của \(b\).

– Không có logarit của số âm, nghĩa là \(b > 0\).

– Cơ số phải dương và khác \(1\), nghĩa là \(0 < a \ne 1\).

– Theo định nghĩa logarit ta có:

\(\begin{array}{l} + ){\log _a}1 = 0;{\log _a}a = 1\\ + ){\log _a}{a^b} = b,\forall b \in R\\ + ){a^{{{\log }_a}b}} = b,\forall b > 0\end{array}\)

2. Tính chất

1/ Nếu \(a > 1;b,c > 0\) thì \({\log _a}b > {\log _a}c \Leftrightarrow b > c\).

2/ Nếu \(0 < a < 1;b,c > 0\) thì \({\log _a}b > {\log _a}c \Leftrightarrow b < c\).

3/ \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\) \( \left( {0 < a \ne 1;b,c > 0} \right)\)

4/ \({\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}b – {\log _a}c\) \( \left( {0 < a \ne 1;b,c > 0} \right)\)

5/ \({\log _a}{b^n} = n{\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)

6/ \({\log _a}\dfrac{1}{b} =  – {\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)

7/ \({\log _a}\sqrt[n]{b} = {\log _a}{b^{\frac{1}{n}}} = \dfrac{1}{n}{\log _a}b\) \( \left( {0 < a \ne 1;b > 0;n > 0;n \in {N^*}} \right)\)

8/ \({\log _a}b.{\log _b}c = {\log _a}c \Leftrightarrow {\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\) \(\left( {0 < a,b \ne 1;c > 0} \right)\)

9/ \({\log _a}b = \dfrac{1}{{{{\log }_b}a}} \Leftrightarrow {\log _a}b.{\log _b}a = 1\) \(\left( {0 < a,b \ne 1} \right)\)

10/ \({\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\) \(\left( {0 < a \ne 1;b > 0;n \ne 0} \right)\)

Hệ quả:

a) Nếu \(a > 1;b > 0\) thì \({\log _a}b > 0 \Leftrightarrow b > 1;\) \({\log _a}b < 0 \Leftrightarrow 0 < b < 1\).

b) Nếu \(0 < a < 1;b > 0\) thì \({\log _a}b < 0 \Leftrightarrow b > 1;\) \({\log _a}b > 0 \Leftrightarrow 0 < b < 1\).

c) Nếu \(0 < a \ne 1;b,c > 0\) thì \({\log _a}b = {\log _a}c \Leftrightarrow b = c\).

Logarit thập phân \({\log _{10}}b = \log b\left( { = \lg b} \right)\) có đầy đủ tính chất của logarit cơ số \(a\).

II. Dạng 1: Tính giá trị biểu thức, rút gọn biểu thức logarit.

Phương pháp:

– Bước 1: Biến đổi các biểu thức có chứa logarit sử dụng những tính chất của logarit.

– Bước 2: Thực hiện tính toán dựa vào thứ tự thực hiện phép tính:

+ Nếu không có ngoặc: Lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.

+ Nếu có ngoặc: Thực hiện trong ngoặc \( \to \) lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.

III. Dạng 2: So sánh các biểu thức có chứa logarit.

Phương pháp:

– Bước 1: Đưa các logarit về cùng cơ số (nếu có thể)

– Bước 2: Đơn giản các biểu thức đã cho bằng cách sử dụng tính chất của logarit.

– Bước 3: So sánh các biểu thức sau khi đơn giản, sử dụng một số tính chất của so sánh logarit.

IV. Dạng 3: Biểu diễn một logarit hoặc rút gọn biểu thức có chứa logarit qua các logarit đã cho.

Phương pháp:

– Bước 1: Tách biểu thức cần biểu diễn ra để xuất hiện các logarit đề bài cho bằng cách sử dụng các tính chất của logarit.

– Bước 2: Thay các giá trị bài cho vào và rút gọn sử dụng thứ tự thực hiện phép tính:

+ Nếu không có ngoặc: Lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.

+ Nếu có ngoặc: Thực hiện trong ngoặc \( \to \) lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.

Thuộc chủ đề:LÝ THUYẾT MÔN TOÁN - ĐGTD ĐH BÁCH KHOA HN Tag với:LOGARIT - DGTD BK HN

Bài liên quan:

  1. Lý thuyết phần bài toán lãi suất thi ĐGTD Bách khoa
  2. Lý thuyết phương trình logarit môn toán ĐGNL
  3. Lý thuyết phương trình mũ môn toán ĐGNL
  4. Lý thuyết hàm số logarit môn toán ĐGNL
  5. Lý thuyết hàm số mũ môn toán ĐGNL

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản