• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / LÝ THUYẾT MÔN TOÁN - ĐGTD ĐH BÁCH KHOA HN / Lý thuyết phần elip thi ĐGTD Bách khoa

Lý thuyết phần elip thi ĐGTD Bách khoa

11/04/2022 by Thầy Đồ Để lại bình luận

I. Định nghĩa

Cho hai điểm cố định \({F_1},\,\,{F_2}\) với \({F_1}{F_2} = 2c\left( {c > 0} \right)\) và hằng số \(a > c\).

Elip $(E)$ là tập hợp các điểm $M$ thỏa mãn \(M{F_1} + M{F_2} = 2a\).

Các điểm \({F_1},\,\,{F_2}\) là tiêu điểm của $(E).$

Khoảng cách \({F_1}{F_2} = 2c\) là tiêu cự của $(E).$

\(M{F_1},\,\,M{F_2}\) được gọi là bán kính qua tiêu.

II. Phương trình chính tắc của elip

Với \({F_1}\left( { – c;0} \right),\,\,{F_2}\left( {c;0} \right)\):

 $M\left( {x;y} \right) \in \left( E \right) \Leftrightarrow \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( 1 \right)$ trong đó \({b^2} = {a^2} – {c^2}\)

(1) được gọi là phương trình chính tắc của $(E)$

III. Hình dạng và tính chất của elip

Elip có phương trình $(1)$ nhận các trục tọa độ là trục đối xứng và gốc tọa độ làm tâm đối xứng.

+ Tiêu điểm: Tiêu điểm trái \({F_1}\left( { – c;0} \right)\), tiêu điểm phải \({F_2}\left( {c;0} \right)\)

+ Các đỉnh: \({A_1}\left( { – a;0} \right),\,\,{A_2}\left( {a;0} \right),\) \({B_1}\left( {0; – b} \right),\,\,{B_2}\left( {0;b} \right)\)

+ Trục lớn: \({A_1}{A_2} = 2a\), nằm trên trục $Ox;$ trục nhỏ :\({B_1}{B_2} = 2b\), nằm trên trục $Oy$

+ Hình chữ nhật tạo bởi các đường thẳng \(x =  \pm a,\,y =  \pm b\) gọi là hình chữ nhật cơ sở.

+ Tâm sai: \(e = \dfrac{c}{a} < 1\)

+ Bán kính qua tiêu điểm của điểm \(M\left( {{x_M};{y_M}} \right)\) thuộc $(E)$ là:

\(M{F_1} = a + e{x_M} = a + \dfrac{c}{a}{x_M},\) \(M{F_2} = a – e{x_M} = a – \dfrac{c}{a}{x_M}\)

Thuộc chủ đề:LÝ THUYẾT MÔN TOÁN - ĐGTD ĐH BÁCH KHOA HN Tag với:PP OXY - DGTD BK HN

Bài liên quan:

  1. Lý thuyết phần phương trình đường tròn thi ĐGTD Bách khoa

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản