• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / LÝ THUYẾT MÔN TOÁN - ĐGTD ĐH BÁCH KHOA HN / Lý thuyết hàm số logarit môn toán ĐGNL

Lý thuyết hàm số logarit môn toán ĐGNL

07/04/2022 by Thầy Đồ Để lại bình luận

I. Hàm số logarit

– Hàm số logarit cơ số \(a\) là hàm số có dạng \(y = {\log _a}x\left( {0 < a \ne 1} \right)\).

– Hàm số logarit có đạo hàm tại \(\forall x > 0\) và \(y’ = \left( {{{\log }_a}x} \right)’ = \dfrac{1}{{x\ln a}}\)

(đặc biệt \(\left( {\ln x} \right)’ = \dfrac{1}{x}\) )

– Giới hạn liên quan \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1\).

– Đạo hàm: \(y = {\log _a}x \Rightarrow y’ = \left( {{{\log }_a}x} \right)’ = \dfrac{1}{{x\ln a}};y = {\log _a}u\left( x \right) \Rightarrow y’ = \dfrac{{u’\left( x \right)}}{{u\left( x \right)\ln a}}\)

(đặc biệt \(\left( {\ln x} \right)’ = \dfrac{1}{x}\) )

Khảo sát \(y = {\log _a}x\):

– TXĐ: \(D = \left( {0; + \infty } \right)\)

– Chiều biến thiên:

+ Nếu \(a > 1\) thì hàm đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0 < a < 1\) thì hàm nghịch biến trên \(\left( {0; + \infty } \right)\).

– Đồ thị:

+ Đồ thị hàm số có tiệm cận đứng \(x = 0\).

+ Đồ thị hàm số luôn đi qua các điểm \(\left( {1;0} \right)\) và \(\left( {a;1} \right)\).

+ Đồ thị nằm hoàn toàn phía bên phải trục tung vì \(x > 0\).

+ Dáng đồ thị:

Đồ thị hàm số logarit

II. Tính giới hạn các hàm số

Phương pháp:

Áp dụng các công thức tính giới hạn đặc biệt để tính toán:

 \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1\) ; \(\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\log }_a}\left( {1 + x} \right)}}{x} = \dfrac{1}{{\ln a}}\)

III. Tìm GTLN, GTNN của hàm số mũ và hàm số logarit trên một đoạn

Phương pháp:

– Bước 1: Tính \(y’\), tìm các nghiệm \({x_1},{x_2},…,{x_n} \in \left[ {a;b} \right]\) của phương trình \(y’ = 0\).

– Bước 2: Tính \(f\left( a \right),f\left( b \right),f\left( {{x_1}} \right),…,f\left( {{x_n}} \right)\).

– Bước 3: So sánh các giá trị vừa tính ở trên và kết luận GTLN, GTNN của hàm số.

+ GTNN \(m\) là số nhỏ nhất trong các giá trị tính được.

+ GTLN \(M\) là số lớn nhất trong các giá trị tính được.

Thuộc chủ đề:LÝ THUYẾT MÔN TOÁN - ĐGTD ĐH BÁCH KHOA HN Tag với:LOGARIT - DGTD BK HN

Bài liên quan:

  1. Lý thuyết phần bài toán lãi suất thi ĐGTD Bách khoa
  2. Lý thuyết phương trình logarit môn toán ĐGNL
  3. Lý thuyết phương trình mũ môn toán ĐGNL
  4. Lý thuyết hàm số mũ môn toán ĐGNL
  5. Lý thuyết phần logarit thi ĐGTD Bách khoa

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản