Bài tập Toán 9 Phương trình quy về phương trình bậc nhất một ẩn
A. Bài tập Phương trình quy về phương trình bậc nhất một ẩn
Bài 1. Giải các phương trình:
a) 4x(x + 2) = 0;
b) (2x – 8)(x – 7) = 0;
c) 3x – x2 = 0;
d) (x – 4)2 – 25x2 = 0.
Hướng dẫn giải
a) Ta có 4x(x + 2) = 0
4x = 0 hoặc x + 2 = 0
x = 0 hoặc x = –2.
Vậy phương trình đã cho có hai nghiệm là x = 0 và x = –2.
b) Ta có (2x – 8)(x – 7) = 0
2x – 8 = 0 hoặc x – 7 = 0
2x = 8 hoặc x = 7
x = 4 hoặc x = 7.
Vậy phương trình đã cho có hai nghiệm là x = 4 và x = 7.
c) Ta có 3x – x2 = 0
x(3 – x) = 0
x = 0 hoặc 3 – x = 0
x = 0 hoặc x = 3.
Vậy phương trình đã cho có hai nghiệm là x = 0 và x = 3.
d) Ta có (x – 3)2 – 16x2 = 0
(x – 3)2 – (4x)2 = 0
(x – 3 + 4x)(x – 3 – 4x) = 0
(5x – 3)(–3x – 3) = 0
5x – 3 = 0 hoặc –3x – 3 = 0
5x = 3 hoặc 3x = –3
hoặc x = –1.
Vậy phương trình đã cho có hai nghiệm là và x = –1.
Bài 2. Điều kiện xác định của phương trình là
A. x ≠ 2;
B. x ≠-2;
C. x ≠ 2 và x ≠ 1;
D. x ≠ 2 và x ≠ 0.
Hướng dẫn giải
Đáp án đúng là: A
Điều kiện xác định của phương trình là x – 2 ≠ 0 hay x ≠ 2.
Bài 3. Giải các phương trình:
a) 4x(x + 2) = 0;
b) (x – 7)(2x + 5) = 0;
c) x(3x + 5) – 9x – 15 = 0;
d) x2 – 16 + 5x(x – 4) = 0.
Hướng dẫn giải
a) Ta có 5x(4x + 3) = 0
Nên 5x = 0 hoặc 4x + 3 = 0
• 5x = 0, suy ra x = 0.
• 4x + 3 = 0 hay 4x = –3, suy ra
Vậy phương trình đã cho có hai nghiệm là x = 0 và
b) Ta có (x – 7)(2x + 5) = 0
Nên x – 7 = 0 hoặc 2x + 5 = 0.
• x – 7 = 0 suy ra x = 7.
• 2x + 5 = 0 hay 2x = –5, suy ra .
Vậy phương trình đã cho có hai nghiệm là x = 7 và .
c) Biến đổi phương trình đã cho về phương trình tích như sau:
x(3x + 5) – 9x – 15 = 0
x(3x + 5) – 3(3x + 5) = 0
(3x + 5)(x – 3) = 0
Ta giải hai phương trình sau:
• 3x + 5 = 0 hay 3x = -5 suy ra .
• x -3 = 0 suy ra x = 3.
Vậy phương trình đã cho có hai nghiệm là và x = 3.
Bài 4. Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B trở về A (cùng cung đường khi đi từ A đến B), người đó tăng vận tốc thêm 4 km/h so với lúc đi nên lúc về mất ít thời gian hơn so với lúc đi là 30 phút. Tính vận tốc của người xe đạp khi đi từ A đến B.
Hướng dẫn giải
Đổi 30 phút giờ.
Gọi vận tốc của người đi xe đạp khi đi từ A đến B là x (km/h, x > 0).
Thời gian người đó đi từ A đến B là (giờ).
Khi từ B trở về A, người đó tăng vận tốc thêm 4 km/h so với lúc đi nên lúc trở về, vận tốc của người đó là: x + 4 (km/h).
Thời gian người đó từ B trở về A là: (giờ).
Theo bài, lúc về mất ít thời gian hơn so với lúc đi là 30 phút nên ta có phương trình:
Giải phương trình:
24.2(x + 4) – 24.2x = x(x + 4)
48x + 192 – 48x = x2 + 4x
192 = x2 + 4x
x2– 12x + 16x – 192 = 0
x(x – 12) + 16(x – 12) = 0
(x – 12)(x + 16) = 0
x – 12 = 0 hoặc x + 16 = 0
x = 12 hoặc x = –16.
Ta thấy chỉ có x = 12 thỏa mãn điều kiện x > 0.
Bài 6. Giải các phương trình sau:
a) x(22x – 12) = 0;
b) (4x – 1)2 – 9x2 = 0.
Hướng dẫn giải
a) (x + 21)(22x – 12) = 0
Để giải phương trình đã cho, ta giải hai phương trình sau:
⦁ x + 21 = 0
x = –21;
⦁ 22x – 12 = 0
22x = 12
Vậy phương trình đã cho có hai nghiệm là x = –21 và
b) (4x – 1)2 – 9x2 = 0
(4x – 1)2 – (3x)2 = 0
(4x – 1 – 3x)(4x – 1 + 3x) = 0
(x – 1)(7x – 1) = 0.
Để giải phương trình trên, ta giải hai phương trình sau:
⦁ x – 1 = 0
x = 1;
⦁ 7x – 1 = 0
7x = 1
Vậy phương trình đã cho có hai nghiệm là x = 1 và
B. Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn
1. Phương trình tích
Phương trình tích là phương trình có dạng .
Cách giải phương trình tích
Muốn giải phương trình tích , ta giải hai phương trình và , rồi lấy tất cả các nghiệm của chúng. |
Ví dụ: Giải phương trình
Lời giải:
Ta có:
hoặc .
hoặc
hoặc
Vậy phương trình đã cho có hai nghiệm là và .
Các bước giải phương trình:
Bước 1. Đưa phương trình về phương trình tích . Bước 2. Giải phương trình tích tìm được. |
Ví dụ: Giải phương trình .
Lời giải:
Biến đổi phương trình đã cho về phương trình tích như sau:
hoặc .
hoặc .
Vậy phương trình đã cho có hai nghiệm là và .
2. Phương trình chứa ẩn ở mẫu quy về phương trình bậc nhất
Điều kiện xác định của phương trình chứa ẩn ở mẫu
Đối với phương trình chứa ẩn ở mẫu, điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0 gọi là điều kiện xác định của phương trình. |
Ví dụ:
– Phương trình có điều kiện xác định là vì khi .
– Phương trình có điều kiện xác định là và vì khi , khi .
Các bước giải phương trình chứa ẩn ở mẫu
Bước 1. Tìm điều kiện xác định của phương trình. Bước 2. Quy đồng mẫu thức hai vế của phương trình, rồi khử mẫu. Bước 3. Giải phương trình vừa tìm được. Bước 4. Xét mỗi giá trị tìm được ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. |
Ví dụ: Giải phương trình
Lời giải:
Điều kiện xác định và .
Ta có:
Giá trị không thỏa mãn ĐKXĐ.
Vậy phương trình vô nghiệm.
Sơ đồ tư duy Phương trình quy về phương trình bậc nhất một ẩn
