• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / Lý Thuyết Tiếng Anh – ĐGNL HCM / Lý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HCM

Lý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HCM

02/02/2022 by Thầy Đồ Để lại bình luận

I. Các dạng phương trình mặt cầu

– Dạng 1: Phương trình chính tắc của mặt cầu tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) là:

\({\left( {x – a} \right)^2} + {\left( {y – b} \right)^2} + {\left( {z – c} \right)^2} = {R^2}\)     (1)

– Dạng 2: Phương trình tổng quát của mặt cầu \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\)    (2)

Phương trình (2) có tâm \(I\left( { – a; – b; – c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} – d} \).

Do đó điều kiện cần và đủ để (2) là phương trình mặt cầu là \({a^2} + {b^2} + {c^2} – d > 0\)

II. Nhận biết các yếu tố từ phương trình mặt cầu

Phương pháp:

Sử dụng định nghĩa tâm và bán kính mặt cầu:

– Mặt cầu có phương trình dạng \({\left( {x – a} \right)^2} + {\left( {y – b} \right)^2} + {\left( {z – c} \right)^2} = {R^2}\) có tâm \(\left( {a;b;c} \right)\) và bán kính \(R\).

– Mặt cầu có phương trình dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) có tâm \(I\left( { – a; – b; – c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} – d} \).

III. Viết phương trình mặt cầu

Phương pháp chung:

Cách 1: Sử dụng phương trình mặt cầu dạng tổng quát.

– Tìm tâm và bán kính mặt cầu, từ đó viết phương trình theo dạng 1 nêu ở trên.

Cách 2: Sử dụng phương trình mặt cầu dạng khai triển.

– Gọi mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\)

– Sử dụng điều kiện bài cho để tìm \(a,b,c,d\).

Một số bài toán hay gặp:

– Viết phương trình mặt cầu với tâm và bán kính đã cho.

– Mặt cầu có đường kính \(AB\): tâm là trung điểm của \(AB\) và bán kính \(R = \dfrac{{AB}}{2}\).

– Mặt cầu đi qua \(4\) điểm \(A,B,C,D\):

* Cách 1:

+) Gọi mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\)

+) Thay tọa độ các điểm bài cho vào phương trình và tìm \(a,b,c,d\).

*Cách 2:

+) Gọi I(a,b,c) là tâm của mặt cầu.

+) Lập hệ phương trình 

\(\left\{ \begin{array}{l}IA = IB\\IA = IC\\IA = ID\end{array} \right.\)

tìm a, b, c.

+) Bán kính \(R=IA\).

* Cách 3:

+) Tìm mặt phẳng trung trực của các đoạn thẳng AB, AC, AD. Mặt phẳng trung trực của AB đi qua trung điểm của AB và nhận AB làm một vectơ pháp tuyến.

+) Tâm mặt cầu là giao của 3 mặt phẳng đó.

+) Bán kính \(R=IA\).

IV. Tìm tham số để mặt cầu thỏa mãn điều kiện cho trước

– Mặt cầu đi qua một điểm nếu tọa độ điểm đó thỏa mãn phương trình mặt cầu.

Thuộc chủ đề:Lý Thuyết Tiếng Anh – ĐGNL HCM, Lý Thuyết Toán - logic - số liệu – ĐGNL HCM Tag với:Toán học - ĐGNL HCM

Bài liên quan:

  1. Lý thuyết phần các bài toán về đường thẳng và mặt cầu thi ĐGNL ĐHQG HCM
  2. Lý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HCM
  3. Lý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HCM
  4. Lý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HCM
  5. Lý thuyết phần phương trình đường thẳng thi ĐGNL ĐHQG HCM
  6. Lý thuyết phần các dạng toán viết phương trình mặt phẳng thi ĐGNL ĐHQG HCM
  7. Lý thuyết phần tích có hướng và ứng dụng thi ĐGNL ĐHQG HCM
  8. Lý thuyết phần bài toán về điểm và vectơ thi ĐGNL ĐHQG HCM
  9. Lý thuyết phần thể tích khối hộp thi ĐGNL ĐHQG HCM
  10. Lý thuyết phần thể tích của khối chóp thi ĐGNL ĐHQG HCM

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản