I. Vị trí tương đối của đường thẳng và mặt cầuCho mặt cầu \(\left( S \right)\) tâm \(I\), bán kính \(R\) và đường thẳng \(\Delta \) (đi qua \(M\) và có VTCP \(\overrightarrow u \)). Khi đó: +) \(\Delta \cap \left( S \right) = \emptyset \Leftrightarrow d\left( {I,\Delta } \right) > R\). +) \(\Delta \cap \left( S \right) = \left\{ H \right\} \Leftrightarrow d\left( … [Đọc thêm...] vềLý thuyết phần các bài toán về đường thẳng và mặt cầu thi ĐGNL ĐHQG HCM
Lý Thuyết Tiếng Anh – ĐGNL HCM
Lý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HCM
I. Vị trí tương đối giữa mặt phẳng và mặt cầuCho mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right)\) tâm \(I\) bán kính \(R\). Khi đó: - \(\left( S \right) \cap \left( P \right) = \emptyset \Leftrightarrow d\left( {I,\left( P \right)} \right) > R\). - \(\left( S \right) \cap \left( P \right) = \left\{ H \right\} \Leftrightarrow d\left( {I,\left( P \right)} … [Đọc thêm...] vềLý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HCM
Lý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HCM
I. Các dạng phương trình mặt cầu- Dạng 1: Phương trình chính tắc của mặt cầu tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) (1) - Dạng 2: Phương trình tổng quát của mặt cầu \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) (2) Phương trình (2) có tâm \(I\left( { - a; … [Đọc thêm...] vềLý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HCM
Lý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HCM
Một số dạng phương trình đường thẳng liên quan đến mặt phẳng. +) Đi qua một điểm và vuông góc với một mặt phẳng. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) - Đường thẳng \(d\) đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) thì nó nhận \(\overrightarrow {{u_d}} = \overrightarrow {{n_P}} \) làm VTCP. +) … [Đọc thêm...] vềLý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HCM
Lý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HCM
I. Vị trí tương đối giữa hai đường thẳngCho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\) . Ta có: +) \(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ … [Đọc thêm...] vềLý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HCM