• Skip to main content
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Lý Thuyết Tiếng Anh – ĐGNL HCM

Lý thuyết phần các bài toán về đường thẳng và mặt cầu thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Vị trí tương đối của đường thẳng và mặt cầuCho mặt cầu \(\left( S \right)\) tâm \(I\), bán kính \(R\) và đường thẳng \(\Delta \) (đi qua \(M\) và có VTCP \(\overrightarrow u \)). Khi đó: +) \(\Delta  \cap \left( S \right) = \emptyset  \Leftrightarrow d\left( {I,\Delta } \right) > R\). +) \(\Delta  \cap \left( S \right) = \left\{ H \right\} \Leftrightarrow d\left( … [Đọc thêm...] vềLý thuyết phần các bài toán về đường thẳng và mặt cầu thi ĐGNL ĐHQG HCM

Lý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Vị trí tương đối giữa mặt phẳng và mặt cầuCho mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right)\) tâm \(I\) bán kính \(R\). Khi đó: - \(\left( S \right) \cap \left( P \right) = \emptyset  \Leftrightarrow d\left( {I,\left( P \right)} \right) > R\). - \(\left( S \right) \cap \left( P \right) = \left\{ H \right\} \Leftrightarrow d\left( {I,\left( P \right)} … [Đọc thêm...] vềLý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HCM

Lý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Các dạng phương trình mặt cầu- Dạng 1: Phương trình chính tắc của mặt cầu tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\)     (1) - Dạng 2: Phương trình tổng quát của mặt cầu \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\)    (2) Phương trình (2) có tâm \(I\left( { - a; … [Đọc thêm...] vềLý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HCM

Lý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

Một số dạng phương trình đường thẳng liên quan đến mặt phẳng. +) Đi qua một điểm và vuông góc với một mặt phẳng. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) - Đường thẳng \(d\) đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) thì nó nhận \(\overrightarrow {{u_d}}  = \overrightarrow {{n_P}} \) làm VTCP. +) … [Đọc thêm...] vềLý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HCM

Lý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Vị trí tương đối giữa hai đường thẳngCho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\) . Ta có: +) \(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ … [Đọc thêm...] vềLý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HCM

Lý thuyết phần phương trình đường thẳng thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Phương trình đường thẳng- Phương trình tham số của đường thẳng: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\left( {t \in \mathbb{R}} \right)\) ở đó \(M\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thuộc dường thẳng và \(\overrightarrow u  = \left( {a;b;c} \right)\)  là VTCP của đường thẳng. - Phương trình chính tắc của đường … [Đọc thêm...] vềLý thuyết phần phương trình đường thẳng thi ĐGNL ĐHQG HCM

Lý thuyết phần các dạng toán viết phương trình mặt phẳng thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Phương trình mặt phẳng- Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n  = \left( {a;b;c} \right)\) làm VTPT là: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\) Muốn viết phương trình mặt phẳng ta cần xác định một điểm và một véc tơ pháp tuyến. - Phương trình đoạn … [Đọc thêm...] vềLý thuyết phần các dạng toán viết phương trình mặt phẳng thi ĐGNL ĐHQG HCM

Lý thuyết phần tích có hướng và ứng dụng thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Tích có hướng của hai véc tơ- Định nghĩa: Cho các véc tơ \(\overrightarrow {{u_1}}  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}}  = \left( {{x_2};{y_2};{z_2}} \right)\). Tích có hướng của hai véc tơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) là véc tơ \(\overrightarrow u \), kí hiệu  \(\overrightarrow u  = \left[ {\overrightarrow {{u_1}} … [Đọc thêm...] vềLý thuyết phần tích có hướng và ứng dụng thi ĐGNL ĐHQG HCM

Lý thuyết phần bài toán về điểm và vectơ thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Tìm tọa độ điểm đặc biệtPhương pháp: Sử dụng định nghĩa điểm, điểm thuộc các trục tọa độ, điểm thuộc các mặt phẳng tọa độ và các tọa độ điểm đặc biệt như: - Trung điểm \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\) - Trọng tâm tam giác \(G( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + … [Đọc thêm...] vềLý thuyết phần bài toán về điểm và vectơ thi ĐGNL ĐHQG HCM

Lý thuyết phần thể tích khối hộp thi ĐGNL ĐHQG HCM

02/02/2022 by admin Để lại bình luận

I. Thể tích khối hộp, khối lăng trụ- Thể tích khối hộp chữ nhật: \(V = abc\) với \(a,b,c\) là ba kích thước của hình hộp chữ nhật. - Thể tích khối lập phương cạnh \(a:V = {a^3}\). - Thể tích khối lăng trụ: \(V = S.h\) với \(S\) là diện tích đáy, \(h\) là chiều cao.II. Tính thể tích khối lăng trụ xiênPhương pháp chung: - Bước 1: Xác định đường cao của lăng trụ và tính độ dài … [Đọc thêm...] vềLý thuyết phần thể tích khối hộp thi ĐGNL ĐHQG HCM

  • Chuyển tới trang 1
  • Chuyển tới trang 2
  • Chuyển tới trang 3
  • Interim pages omitted …
  • Chuyển tới trang 7
  • Chuyển đến Trang sau »

Sidebar chính

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2022.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.