I. Tìm hàm số có đồ thị cho trước và ngược lại
Phương pháp:
– Bước 1: Quan sát dáng đồ thị, tính đơn điệu,…của các đồ thị bài cho.
– Bước 2: Đối chiếu với hàm số bài cho và chọn kết luận.
II. Tìm mối quan hệ giữa các cơ số khi biết đồ thị
Phương pháp:
– Bước 1: Quan sát các đồ thị, nhận xét về tính đơn điệu để nhận xét các cơ số.
+ Hàm số đồng biến thì cơ số lớn hơn \(1\).
+ Hàm số nghịch biến thì cơ số lớn hơn \(0\) và nhỏ hơn \(1\).
– Bước 2: So sánh các cơ số dựa vào phần đồ thị của hàm số.
– Bước 3: Kết hợp các điều kiện ở trên ta được mối quan hệ cần tìm.
Đối với một số bài toán phức tạp hơn thì ta cần chú ý thêm đến một số yếu tố khác như điểm đi qua, tính đối xứng,…
III. Tính đạo hàm các hàm số
Phương pháp:
– Bước 1: Áp dụng các công thức tính đạo hàm của tổng, hiệu, tích, thương để tính đạo hàm hàm số đã cho.
\(\left( {u \pm v} \right)’ = u’ \pm v’;\left( {uv} \right)’ = u’v + uv’;\left( {\dfrac{u}{v}} \right)’ = \dfrac{{u’v – uv’}}{{{v^2}}}\)
– Bước 2: Tính đạo hàm các hàm số thành phần dựa vào công thức tính đạo hàm các hàm số cơ bản: hàm đa thức, phân thức, hàm mũ, logarit, lũy thừa,…
– Bước 3: Tính toán và kết luận.
IV. Tính giới hạn các hàm số
Phương pháp:
Áp dụng các công thức tính giới hạn đặc biệt để tính toán:
\(\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} – 1}}{x} = 1\); \(\mathop {\lim }\limits_{x \to 0} \dfrac{{{a^x} – 1}}{x} = \ln a\); \(\mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \dfrac{1}{x}} \right)^x} = e\); \(\mathop {\lim }\limits_{x \to 0} {\left( {x + 1} \right)^{\dfrac{1}{x}}} = e\).
V. Tìm GTLN, GTNN của hàm số mũ trên một đoạn
Phương pháp:
– Bước 1: Tính \(y’\), tìm các nghiệm \({x_1},{x_2},…,{x_n} \in \left[ {a;b} \right]\) của phương trình \(y’ = 0\).
– Bước 2: Tính \(f\left( a \right),f\left( b \right),f\left( {{x_1}} \right),…,f\left( {{x_n}} \right)\).
– Bước 3: So sánh các giá trị vừa tính ở trên và kết luận GTLN, GTNN của hàm số.
+ GTNN \(m\) là số nhỏ nhất trong các giá trị tính được.
+ GTLN \(M\) là số lớn nhất trong các giá trị tính được.