• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / LÝ THUYẾT TƯ DUY ĐỊNH LƯỢNG - ĐGNL HN / Lý thuyết phần bài toán tiếp tuyến với đồ thị thi ĐGNL ĐHQG HN

Lý thuyết phần bài toán tiếp tuyến với đồ thị thi ĐGNL ĐHQG HN

20/03/2022 by Thầy Đồ Để lại bình luận

I. Viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\), viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right) \in \left( C \right)\).

Phương pháp:

– Bước 1: Tính \(y’ = f’\left( x \right) \Rightarrow f’\left( {{x_0}} \right)\).

– Bước 2: Viết phương trình tiếp tuyến \(y = f’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + f\left( {{x_0}} \right)\)

– Bước 3: Kết luận.

II. Viết phương trình tiếp tuyến của đồ thị hàm số đi qua một điểm

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\), viết phương trình tiếp tuyến của \(\left( C \right)\) biết tiếp tuyến đi qua điểm \(M\left( {{x_M};{y_M}} \right)\).

Phương pháp:

– Bước 1: Tính \(y’ = f’\left( x \right)\).

– Bước 2: Viết phương trình tiếp tuyến tại điểm có hoành độ \({x_0}\) của \(\left( C \right)\): \(y = f’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + f\left( {{x_0}} \right)\).

– Bước 3: Thay tọa độ \(\left( {{x_M};{y_M}} \right)\) vào phương trình trên, giải phương trình tìm \({x_0}\).

– Bước 4: Thay mỗi giá trị \({x_0}\) tìm được vào phương trình tiếp tuyến ta được phương trình cần tìm.

III. Viết phương trình tiếp tuyến của đồ thị hàm số cho biết hệ số góc

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) biết nó có hệ số góc \(k\).

Phương pháp:

– Bước 1: Tính \(y’ = f’\left( x \right)\).

– Bước 2: Giải phương trình \(f’\left( x \right) = k\) tìm nghiệm \({x_1},{x_2},…\).

– Bước 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại các điểm \(\left( {{x_1};f\left( {{x_1}} \right)} \right),\left( {{x_2};f\left( {{x_2}} \right)} \right),…\)

IV. Viết phương trình tiếp tuyến của đồ thị hàm số biết hệ số góc nhỏ nhất, lớn nhất

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) biết nó có hệ số góc nhỏ nhất, lớn nhất.

Phương pháp:

– Bước 1: Tính \(y’ = f’\left( x \right)\).

– Bước 2: Tìm GTNN (hoặc GTLN) của \(f’\left( x \right)\) suy ra hệ số góc của tiếp tuyến và hoành độ tiếp điểm (là giá trị mà \(f’\left( x \right)\) đạt GTNN, GTLN).

– Bước 3: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm vừa tìm được.

a) Tiếp tuyến tại các điểm cực trị của đồ thị \(\left( C \right)\) có phương song song hoặc trùng với trục hoành.

b) Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\left( {a \ne 0} \right)\).

+) Khi \(a > 0\) thì tiếp tuyến tại tâm đối xứng của \(\left( C \right)\) có hệ số góc nhỏ nhất.

+) Khi \(a < 0\) thì tiếp tuyến tại tâm đối xứng của \(\left( C \right)\) có hệ số góc lớn nhất.

V. Viết phương trình tiếp tuyến của đồ thị hàm số biết mối quan hệ của nó với đường thẳng cho trước

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\).

Phương pháp:

– Bước 1: Tính \(y’ = f’\left( x \right)\).

– Bước 2: Nêu điều kiện về mối quan hệ giữa tiếp tuyến có hệ số góc \(k = f’\left( x \right)\) với đường thẳng \(d\) có hệ số góc \(k’\).

+ Tiếp tuyến vuông góc \(d \Leftrightarrow k.k’ =  – 1\).

+ Tiếp tuyến song song với \(d \Leftrightarrow k = k’\).

+ Góc tạo bởi tiếp tuyến của \((C)\) với \(d\) bằng \(\alpha  \Leftrightarrow \tan \alpha  = \left| {\dfrac{{{k} – {k’}}}{{1 + {k}{k’}}}} \right|\)

– Bước 3: Giải phương trình ở trên tìm nghiệm \({x_1},{x_2},…\) và tọa độ các tiếp điểm.

– Bước 4: Viết phương trình các tiếp tuyến tại các tiếp điểm vừa tìm được.

VI. Tìm điều kiện của tham số để đồ thị hàm số có tiếp tuyến thỏa mãn điều kiện nào đó

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\). Tìm \(m\) để tiếp tuyến với \(\left( C \right)\) đi qua điểm \(M\left( {{x_M};{y_M}} \right)\) cho trước.

Phương pháp:

– Bước 1: Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \({x_0}\) thuộc \(\left( C \right)\): \(y = f’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + f\left( {{x_0}} \right)\)

– Bước 2: Nêu điều kiện để tiếp tuyến thỏa mãn điều kiện đề bài:

Tiếp tuyến đi qua điểm \(M\left( {{x_M};{y_M}} \right) \Leftrightarrow pt{\rm{ }}{y_M} = f’\left( {{x_0}} \right)\left( {{x_M} – {x_0}} \right) + f\left( {{x_0}} \right)\) có nghiệm.

– Bước 3: Tìm điều kiện của \(m\) dựa vào điều kiện ở trên và kết luận.

Thuộc chủ đề:LÝ THUYẾT TƯ DUY ĐỊNH LƯỢNG - ĐGNL HN Tag với:Khao sat ham so - DGNL HN

Bài liên quan:

  1. Lý thuyết phần bài toán tương giao đồ thị thi ĐGNL ĐHQG HN
  2. Lý thuyết phần bài toán về hàm phân thức có tham số thi ĐGNL ĐHQG HN
  3. Lý thuyết phần bài toán liên quan đến khảo sát hàm số bậc ba, bậc bốn trùng phương có tham số thi ĐGNL ĐHQG HN
  4. Lý thuyết phần giá trị lớn nhất, nhỏ nhất của hàm số thi ĐGNL HN
  5. Lý thuyết phần bài toán cực trị có tham số đối với một số hàm số cơ bản thi ĐGNL ĐHQG HN
  6. Lý thuyết phần cực trị của hàm số thi ĐGNL ĐHQG HN
  7. Lý thuyết phần sự đồng biến, nghịch biến thi ĐGNL HN

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản