• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / LÝ THUYẾT TƯ DUY ĐỊNH LƯỢNG - ĐGNL HN / Lý thuyết phần phương trình lượng giác cơ bản thi ĐGNL ĐHQG HN

Lý thuyết phần phương trình lượng giác cơ bản thi ĐGNL ĐHQG HN

13/03/2022 by Thầy Đồ Để lại bình luận

I. Phương trình lượng giác cơ bản

a) Phương trình \(\sin x = m\).

+) Nếu \(\left| m \right| > 1\) thì phương trình vô nghiệm.

+) Nếu \(\left| m \right| \le 1\) thì phương trình \( \Leftrightarrow \left[ \begin{array}{l}x = \arcsin m + k2\pi \\x = \pi  – \arcsin m + k2\pi \end{array} \right.\)

Đặc biệt: \(\sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  – \alpha  + k2\pi \end{array} \right.\left( {k \in Z} \right)\)

b) Phương trình \(\cos x = m\).

+) Nếu \(\left| m \right| > 1\) thì phương trình vô nghiệm.

+) Nếu \(\left| m \right| \le 1\) thì phương trình \( \Leftrightarrow \left[ \begin{array}{l}x = \arccos m + k2\pi \\x =  – \arccos m + k2\pi \end{array} \right.\)

Đặc biệt: \(\cos x = \cos \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  – \alpha  + k2\pi \end{array} \right.\left( {k \in Z} \right)\)

c) Phương trình \(\tan x = m\).

Phương trình luôn có nghiệm \(x = \arctan m + k\pi \).

Đặc biệt: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \left( {k \in Z} \right)\)

d) Phương trình \(\cot x = m\).

Phương trình luôn có nghiệm \(x = {\mathop{\rm arccot}\nolimits} m + k\pi \).

Đặc biệt: \(\cot x = \cot \alpha  \Leftrightarrow x = \alpha  + k\pi \left( {k \in Z} \right)\)

e) Các trường hợp đặc biệt

\( + )\sin x = 0 \Leftrightarrow x = k\pi ;\) \(\cos x = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \)

\( + )\sin x =  – 1 \Leftrightarrow x =  – \dfrac{\pi }{2} + k2\pi ;\) \(\cos x =  – 1 \Leftrightarrow x = \pi  + k2\pi \)

\( + )\sin x = 1 \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi ;\)  \(\cos x = 1 \Leftrightarrow x = k2\pi \)

II. Phương trình bậc nhất đối với một hàm số lượng giác

– Phương trình \(at + b = 0\left( {a,b \in R,a \ne 0} \right)\) với \(t = \sin x\left( {\cos x,\tan x,\cot x} \right)\) là phương trình bậc nhất đối với một hàm số lượng giác \(\sin ,\cos ,\tan ,\cot \).

– Cách giải: Biến đổi \(at + b = 0 \Leftrightarrow t =  – \dfrac{b}{a}\) và giải phương trình lượng giác cơ bản.

III. Một số chú ý khi giải phương trình

– Khi giải phương trình lượng giác có chứa \(\tan ,\cot \), chứa ẩn ở mẫu, căn bậc chẵn,…thì cần đặt điều kiện cho ẩn.

– Khi giải xong phương trình thì cần chú ý thử lại đáp án, kiểm tra điều kiện.

Thuộc chủ đề:LÝ THUYẾT TƯ DUY ĐỊNH LƯỢNG - ĐGNL HN Tag với:Phuong trinh Luong giac - DGNL HN

Bài liên quan:

  1. Lý thuyết phần phương trình lượng giác thường gặp thi ĐGNL ĐHQG HN

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản