• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký
Bạn đang ở:Trang chủ / LÝ THUYẾT TƯ DUY ĐỊNH LƯỢNG - ĐGNL HN / Lý thuyết phần bất phương trình mũ thi ĐGNL ĐHQG HN

Lý thuyết phần bất phương trình mũ thi ĐGNL ĐHQG HN

21/03/2022 by Thầy Đồ Để lại bình luận

I. Tính đơn điệu của hàm số mũ

– Tính đơn điệu của các hàm số \(y = {a^x}\)

+ Với \(0 < a < 1\) thì hàm số \(y = {a^x}\) nghịch biến.

+ Với \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến.

II. Giải bất phương trình mũ

Phương pháp:

– Bước 1: Đặt điều kiện cho ẩn để các biểu thức có nghĩa.

– Bước 2: Sử dụng các phép biến đổi: đưa về cùng cơ số, đặt ẩn phụ, đưa về dạng tích, logarit hóa, dùng hàm số,…để giải bất phương trình.

– Bước 3: Kiểm tra điều kiện và kết luận tập nghiệm.

Khi giải bất phương trình mũ cần chú ý đến điều kiện của cơ số \(a\).

Ví dụ 1: Tập nghiệm của bất phương trình \({3^x} \ge {3^{2x – 1}}\) là:

A. \(\left( { – \infty ;1} \right]\)

B. \(\left( { – \infty ;1} \right)\)

C. \(\left( {1; + \infty } \right)\)                        

D. \(\left[ {1; + \infty } \right)\)

Phương pháp:

Sử dụng phương pháp giải bất phương trình mũ với cơ số \(a > 1\): \({a^{f\left( x \right)}} \ge {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) \ge g\left( x \right)\) .

Cách giải:

\({3^x} \ge {3^{2x – 1}} \Leftrightarrow x \ge 2x – 1 \Leftrightarrow  – x \ge  – 1 \Leftrightarrow x \le 1\)

Vậy tập nghiệm của bất phương trình là \(\left( { – \infty ;1} \right]\).

Chọn A.

Ví dụ 2: Tập nghiệm của bất phương trình: \({\left( {\dfrac{1}{4}} \right)^x} + {\left( {\dfrac{1}{2}} \right)^x} – 2 \le 0\) là:

A. \(\left( { – \infty ;1} \right]\)

B. \(\left( { – 1; + \infty } \right)\)

C. \(\left[ {0; + \infty } \right)\)                         

D. \(\left( { – \infty ;0} \right]\)

Phương pháp:

Đưa về cùng cơ số và biến đổi thành dạng tích rồi giải bất phương trình.

Cách giải:

\(\begin{array}{l}{\left( {\dfrac{1}{4}} \right)^x} + {\left( {\dfrac{1}{2}} \right)^x} – 2 \le 0 \Leftrightarrow {\left( {\dfrac{1}{2}} \right)^{2x}} + {\left( {\dfrac{1}{2}} \right)^x} – 2 \le 0 \Leftrightarrow \left[ {{{\left( {\dfrac{1}{2}} \right)}^x} – 1} \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^x} + 2} \right] \le 0\\ \Leftrightarrow {\left( {\dfrac{1}{2}} \right)^x} – 1 \le 0 \Leftrightarrow {\left( {\dfrac{1}{2}} \right)^x} \le 1 \Leftrightarrow {\left( {\dfrac{1}{2}} \right)^x} \le {\left( {\dfrac{1}{2}} \right)^0} \Leftrightarrow x \ge 0\end{array}\)

Vậy tập nghiệm của bất phương trình là \(\left[ {0; + \infty } \right)\).

Chọn C.

III. Tìm điều kiện của tham số để bất phương trình có nghiệm

Phương pháp:

– Bước 1: Đặt điều kiện cho ẩn để các biểu thức có nghĩa.

– Bước 2: Biến đổi bất phương trình đã cho, nêu điều kiện để bất phương trình có nghiệm hoặc biện luận theo \(m\) nghiệm của bất phương trình.

– Bước 3: Giải điều kiện ở trên để tìm và kết luận điều kiện tham số.

Ví dụ: Tìm \(m\) để bất phương trình \(m{.4^x} – 2 < 0\) nghiệm đúng với mọi \(x\).

A. \(m \in R\)   

B. \(m = 0\)    

C. \(m > 0\)            

D. \(m \le 0\)

Phương pháp:

– Biến đổi bất phương trình đã cho về \(m{.4^x} < 2\).

– Biện luận bất phương trình theo \(m\) nghiệm của bất phương trình.

Cách giải:

Ta có: \(m{.4^x} – 2 < 0 \Leftrightarrow m{.4^x} < 2\).

+ Nếu \(m \le 0\) thì \(m{.4^x} \le 0 < 2\) đúng với mọi \(x\).

+ Nếu \(m > 0\) thì \(m{.4^x} < 2 \Leftrightarrow {4^x} < \dfrac{2}{m} \Leftrightarrow x < {\log _4}\dfrac{2}{m}\), do đó bất phương trình không nghiệm đúng với mọi \(x\).

Vậy \(m \le 0\).

Chọn D.

Thuộc chủ đề:LÝ THUYẾT TƯ DUY ĐỊNH LƯỢNG - ĐGNL HN Tag với:Ham so mu logarit - DGNL HN

Bài liên quan:

  1. Lý thuyết phần bất phương trình logarit thi ĐGNL ĐHQG HN
  2. Lý thuyết phần hệ phương trình mũ và logarit thi ĐGNL ĐHQG HN
  3. Lý thuyết phần phương trình logarit và một số phương pháp giải thi ĐGNL ĐHQG HN
  4. Lý thuyết phần phương trình mũ và một số phương pháp giải thi ĐGNL ĐHQG HN
  5. Lý thuyết phần hàm số lũy thừa thi ĐGNL ĐHQG HN
  6. Lý thuyết phần hàm số logarit thi ĐGNL ĐHQG HN
  7. Lý thuyết phần hàm số mũ thi ĐGNL ĐHQG HN
  8. Lý thuyết logarit thi ĐGNL ĐHQG HN
  9. Lý thuyết phần bài toán lãi kép thi ĐGNL ĐHQG HN
  10. Lý thuyết phần lũy thừa thi ĐGNL ĐHQG HN

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản