Câu hỏi:
Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.
A. 0,029
Đáp án chính xác
B. 0,019
C. 0,021
D. 0,017
Trả lời:
* Gọi số tự nhiên có 4 chữ số là
+ a có 9 cách chọn
+ b, c, d có 10 cách chọn
Không gian mẫu có số phần tử là n(Ω) = 9.103
* Gọi A là biến cố số được chọn có ít nhất hai chữ số 8 đứng liền nhau
TH1 : Có hai chữ số 8 đứng liền nhau. Ta chọn 2 chữ số còn lại trong
+ 2 chữ số 8 đứng đầu thì có 9.10 = 90 cách chọn 2 chữ số còn lại
+ 2 chữ số 8 đứng ở giữa thì có 8 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng đơn vị nên có :
8.9 = 72 cách chọn.
+ 2 chữ số 8 đứng ở cuối thì có 9 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng trăm nên có 9.9 cách chọn.
Vậy trường hợp này có 90 + 72 + 81 = 243 số.
TH2 : Có ba chữ số 8 đứng liền nhau.
+ 3 chữ số 8 đứng đầu thì có 9 cách chọn chữ số hàng đơn vị
+ 3 chữ số 8 đứng cuối thì có 8 cách chọn chữ số hàng nghìn
Vậy trường hợp này có 9 + 8 = 17 số
TH3 : Có 4 chữ số 8 đứng liền nhau thì có 1 số
Số phần tử của biến cố A là n(A) = 243 + 17 + 1 = 261
Xác suất cần tìm là:
Đáp án cần chọn là: A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chọn ngẫu nhiên một số tự nhiên bé hơn 10001000. Xác suất để số đó chia hết cho 55 là:
Câu hỏi:
Chọn ngẫu nhiên một số tự nhiên bé hơn 10001000. Xác suất để số đó chia hết cho 55 là:
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Chọn ngẫu nhiên một số tự nhiên bé hơn 1000 ta có |Ω| = 1000
Gọi A là biến cố chọn được số chia hết cho 5.
Khi đó: A = {5k|0 ≤ 5k < 1000} = {5k| 0 ≤ k < 200}
Nên |A| = 200
VậyĐáp án cần chọn là: A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một hộp đựng 11 thẻ được đánh số 1, 2, 3,…, 11. Rút ngẫu nhiên 3 thẻ và tính tổng các số ghi trên ba thẻ đó. Tính xác suất để tổng nhận được bằng 12.
Câu hỏi:
Một hộp đựng 11 thẻ được đánh số 1, 2, 3,…, 11. Rút ngẫu nhiên 3 thẻ và tính tổng các số ghi trên ba thẻ đó. Tính xác suất để tổng nhận được bằng 12.
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Rút ngẫu nhiên 3 thẻ trong một hộp đựng 11 thẻ ta có
Gọi A là biến cố rút được 3 thẻ và tổng các số ghi trên 3 thẻ bằng 12.
Vì 12 = 1 + 2 + 9 = 1 + 3 + 8 = 1 + 4 + 7
= 1 + 5 + 6 = 2 + 3 + 7 = 2 + 4 + 6 = 3 + 4 + 5
Nên |A| = 7
VậyĐáp án cần chọn là: B
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Câu hỏi:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Ta có: n(Ω) = 6.6 = 36.
Gọi A: “tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7”.
A = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)}.
Do đó n(A) = 6.
VậyĐáp án cần chọn là: B
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo hai con súc sắc. Xác suất để tổng hai mặt bằng 11 là.
Câu hỏi:
Gieo hai con súc sắc. Xác suất để tổng hai mặt bằng 11 là.
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Số phần tử của không gian mẫu là: n(Ω) = 62 = 36
Gọi A là biến cố để tổng hai mặt là 11, các trường hợp có thể xảy ra của A là A = {(5; 6); (6; 5)}
Số phần tử của không gian thuận lợi là: n(A) = 2
Xác suất biến cố A là :Đáp án cần chọn là: A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn tạo thành tam giác đều là :
Câu hỏi:
Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn tạo thành tam giác đều là :
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Bước 1:
Gọi A là biến cố “3 đỉnh được chọn tạo thành tam giác đều”.
Bước 2:
Số cách chọn 3 đỉnh bất kì trong 12 đỉnh làBước 3:
Để 3 đỉnh tạo thành 1 tam giác đều thì các đỉnh cách đều nhau. Do đó số cách chọn tam giác đều làBước 4:
Vậy xác suất làĐáp án cần chọn là: D
====== **** mời các bạn xem câu tiếp bên dưới **** =====