Skip to content

Cộng đồng học tập lớp 12

  • Thi đấu
  • Sitemap

Cộng đồng học tập lớp 12

  • Home » 
  • Giải SBT Toán 12 – Kết nối

Sách bài tập Toán 12 Bài 16 (Kết nối tri thức): Công thức tính góc trong không gian

By Admin Lop12.com 19/02/2025

Giải SBT Toán 12 Bài 16: Công thức tính góc trong không gian

Bài 5.15 trang 31 SBT Toán 12 Tập 2: Trong không gian Oxyz, tính góc giữa hai đường thẳng:

∆: x−21=y+2−1=z2 và ∆’: x=3+2ty=−1+tz=3+t.

Lời giải:

Ta có: uΔ→ = (1; −1; 2) và uΔ‘→ = (2; 1; 1) lần lượt là vectơ chỉ phương của đường thẳng ∆ và ∆’.

Do đó, cosΔ,Δ‘ = cosuΔ→,uΔ‘→=uΔ→.uΔ‘→uΔ→.uΔ‘→

=1.2+1.(−1)+2.112+−12+22.22+12+12 = 12.

⇒ Δ,Δ‘ = 60°.

Vậy góc giữa hai đường thẳng bằng 60°.

Bài 5.16 trang 32 SBT Toán 12 Tập 2: Trong không gian Oxyz, tính góc giữa đường thẳng ∆: x+3−2=y+11=z−12 và mặt phẳng (P): x + 2y – 2z + 3 = 0.

Lời giải:

Ta có: uΔ→ = (−2; 1; 2) là vectơ chỉ phương của đường thẳng d.

           nP→ = (1; 2; −2) là vectơ pháp tuyến của mặt phẳng (P).

Do đó: sinΔ,P = cosuΔ→,nP→ = uΔ→nP→uΔ→.nP→

=−2.1+1.2+2.(−2)12+−22+22.22+12+−22 = 49

⇒ Δ,P ≈ 26,4°.

Bài 5.17 trang 32 SBT Toán 12 Tập 2: Trong không gian Oxyz, tính góc giữa hai mặt phẳng (P): 2x – y + 2z – 1 = 0 và (Q): x + y – z = 0.

Lời giải:

Ta có: nP→= (2; −1; 2), nQ→ = (1; 1; −1) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).

Do đó: cosP,Q = cosnP→,nQ→=nP→.nQ→nP→.nQ→

                                 =2.1+−1.1+2.−122+−12+22.12+12+−12 = 39.

⇒ P,Q ≈ 78,9°.

Bài 5.18 trang 32 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho đường thẳng ∆: x=1y=2+3tz=−3+t.

a) Tính góc giữa đường thẳng ∆ và mặt phẳng (Oxy).

b) Tính góc giữa đường thẳng ∆ và trục Oy.

Lời giải:

a) Ta có: uΔ→ = (0; 3; 1) là vectơ chỉ phương của đường thẳng ∆.

                k→ = (0; 0; 1) là vectơ pháp tuyến của mặt phẳng (Oxy).

Do đó, sinΔ,Oxy = cosuΔ→,k→ = uΔ→.k→uΔ→.k→

=0.0+3.0+1.102+32+12.02+02+12 = 12.

⇒ Δ,Oxy = 30°.

Bài 5.19 trang 32 SBT Toán 12 Tập 2: Trong không gian Oxyz, đường băng của một sân bay thuộc trục Oy.Một máy bay sau khi chạy đà trên đường băng đó đã cất cánh tại điểm A(0; 2; 0) với vận tốc không đổi trong khoảng thời gian ngắn ban đầu, vectơ vận tốc v→ = (1; 4; 1). Hỏi trong khoảng thời gian ngắn nói trên, máy bay chuyển động trên đường thẳng nào và góc cất cánh của máy bay bằng bao nhiêu?

Lời giải:

Trong khoảng thời gian ngắn đó, máy bay chuyển động trên đường thẳng ∆ đi qua A nhận v→ = (1; 4; 1) làm vectơ chỉ phương. Phương trình đường thẳng ∆ là: x1=y−24=z1.

Một vectơ chỉ phương của trục Oy là j→ = (0; 1; 0).

Ta có: cos(∆, Oy) = v→.j→v→.j→ 

                            = 1.0+4.1+1.012+42+12.02+12+02=223.

⇒ (∆, Oy) ≈ 19,5°.

Bài 5.20 trang 32 SBT Toán 12 Tập 2: Trong không gian Oxyz, hai con đường tại một nút giao thông tương ứng thuộc hai đường thẳng:

∆1: x−21=y+12=z1 và ∆2: x+13=y−21=z+14.

a) Nút giao thông trên có phải là nút giao thông khác mức hay không?

b) Tại nút giao thông nói trên, hai con đường tạo với nhau một góc bằng bao nhiêu độ?

Lời giải:

Đường thẳng ∆1 qua điểm A(2; −1; 0) và có vectơ chỉ phương u1→ = (1; 2; 1).

Đường thẳng ∆2 qua điểm B(−1; 2; −1) có vectơ chỉ phương u2→ = (3; 1; 4).

a) Ta có: AB→ = (−3; 3; −1), u1→,u2→ = (7; −1; −5).

⇒ u1→,u2→.AB→ = −19 ≠ 0.

Suy ra ∆1 và ∆2 chéo nhau.

Vậy nút giao thông đó là nút giao thông khác mức.

b) Ta có: cos(∆1, ∆2) = u1→,u2→u1→.u2→

                                  =1.3+2.1+1.412+22+12.32+12+42 = 9156.

⇒ (∆1, ∆2) ≈ 43,9°.

Lý thuyết Công thức tính góc trong không gian

1. Công thức tính góc giữa hai đường thẳng

Trong không gian Oxyz, cho hai đường thẳng ∆ và ∆‘ tương ứng có vectơ chỉ phương u→=a;b;c,u‘→=a‘;b‘;c‘ . Khi đó:

cosΔ,Δ‘=cosu→,u‘→=aa‘+bb‘+cc‘a2+b2+c2.a‘2+b‘2+c‘2

Ví dụ 1. Trong không gian Oxyz, cho hai đường thẳng d1: x=2+ty=−1+tz=3  và d2: x=1−ty=2z=−2+t . Tính góc giữa hai đường thẳng trên.

Hướng dẫn giải

Đường thẳng d1 có vectơ chỉ phương là u→=1;1;0 .

Đường thẳng d2 có vectơ chỉ phương là u‘→=−1;0;1 .

cosΔ,Δ‘=cosu→,u‘→=1.−1+1.0+0.112+12+02.−12+02+12=12

Suy ra (∆, ∆‘) = 60°.

2. Công thức tính góc giữa đường thẳng và mặt phẳng

Trong không gian Oxyz, cho đường thẳng ∆ có vectơ chỉ phương u→=a;b;c  và mặt phẳng (P) có vectơ pháp tuyến n→=A;B;C . Khi đó:

sinΔ,P=cosu→,n→=aA+bB+cCa2+b2+c2.A2+B2+C2.

Ví dụ 2. Trong không gian Oxyz, tính góc giữa đường thẳng ∆: x1=y−2=z1  và mặt phẳng (P): 5x + 11y + 2z – 4 = 0.

Hướng dẫn giải

Ta có đường thẳng ∆ có một vectơ chỉ phương là u→=1;−2;1  và mặt phẳng (P) có một vectơ pháp tuyến là n→=5;11;2 .

Có sinΔ,P=cosu→,n→=1.5+−2.11+1.212+−22+12.52+112+22=1530=12

Suy ra (∆, (P)) = 30°.

3. Công thức tính góc giữa hai mặt phẳng

Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là n→=A;B;C , n‘→=A‘;B‘;C‘ . Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)), được tính theo công thức:

cosP,Q=cosn→,n‘→=AA‘+BB‘+CC‘A2+B2+C2.A‘2+B‘2+C‘2.

Ví dụ 3. Trong không gian Oxyz, tính góc giữa hai mặt phẳng (P): 2x – y + 2z – 1 = 0 và (Q): x + 2y – 2z – 3 = 0.

Hướng dẫn giải

Mặt phẳng (P) có vectơ pháp tuyến n→=2;−1;2  và mặt phẳng (Q) có vectơ pháp tuyến n‘→=1;2;−2 .

Ta có 

cosP,Q=cosn→,n‘→=2.1+−1.2+2.−222+−12+22.12+22+−22=49

Suy ra ((P), (Q)) ≈ 63,6°.

Xem thêm các bài giải SBT Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Bài 15: Phương trình đường thẳng trong không gian

Bài 16: Công thức tính góc trong không gian

Bài 17: Phương trình mặt cầu

Bài tập cuối chương 5

Bài 18: Xác suất có điều kiện

Bài 19: Công thức xác suất toàn phần và công thức Bayes 

Tags : Tags 1. Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1   chi tiết)   Tập 2 (hay
Share
facebookShare on Facebook

Bài liên quan

Sách bài tập Toán 12 Bài 12 (Kết nối tri thức): Tích phân

Sách bài tập Toán 12 Bài 13 (Kết nối tri thức): Ứng dụng hình học của tích phân

Sách bài tập Toán 12 Bài 1 (Kết nối tri thức): Tính đơn điệu và cực trị của hàm số

Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 4

Sách bài tập Toán 12 Bài 2 (Kết nối tri thức): Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Sách bài tập Toán 12 Bài 14 (Kết nối tri thức): Phương trình mặt phẳng

Sách bài tập Toán 12 Bài 3 (Kết nối tri thức): Đường tiệm cận của đồ thị hàm số

Sách bài tập Toán 12 Bài 15 (Kết nối tri thức): Phương trình đường thẳng trong không gian

Mục lục

  1. Sách bài tập Toán 12 Bài 1 (Kết nối tri thức): Tính đơn điệu và cực trị của hàm số
  2. Sách bài tập Toán 12 Bài 2 (Kết nối tri thức): Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  3. Sách bài tập Toán 12 Bài 3 (Kết nối tri thức): Đường tiệm cận của đồ thị hàm số
  4. Sách bài tập Toán 12 Bài 4 (Kết nối tri thức): Khảo sát sự biến thiên và vẽ đồ thị của hàm số
  5. Sách bài tập Toán 12 Bài 5 (Kết nối tri thức): Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
  6. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 1
  7. Sách bài tập Toán 12 Bài 6 (Kết nối tri thức): Vectơ trong không gian
  8. Sách bài tập Toán 12 Bài 7 (Kết nối tri thức): Hệ trục toạ độ trong không gian
  9. Sách bài tập Toán 12 Bài 8 (Kết nối tri thức): Biểu thức toạ độ của các phép toán vectơ
  10. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 2
  11. Sách bài tập Toán 12 Bài 9 (Kết nối tri thức): Khoảng biến thiên và khoảng tứ phân vị
  12. Sách bài tập Toán 12 Bài 10 (Kết nối tri thức): Phương sai và độ lệch chuẩn
  13. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 3
  14. Sách bài tập Toán 12 Bài 11 (Kết nối tri thức): Nguyên hàm
  15. Sách bài tập Toán 12 Bài 12 (Kết nối tri thức): Tích phân
  16. Sách bài tập Toán 12 Bài 13 (Kết nối tri thức): Ứng dụng hình học của tích phân
  17. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 4
  18. Sách bài tập Toán 12 Bài 14 (Kết nối tri thức): Phương trình mặt phẳng
  19. Sách bài tập Toán 12 Bài 15 (Kết nối tri thức): Phương trình đường thẳng trong không gian
  20. Sách bài tập Toán 12 Bài 17 (Kết nối tri thức): Phương trình mặt cầu
  21. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 5
  22. Sách bài tập Toán 12 Bài 18 (Kết nối tri thức): Xác suất có điều kiện
  23. Sách bài tập Toán 12 Bài 19 (Kết nối tri thức): Công thức xác suất toàn phần và công thức Bayes
  24. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập cuối chương 6
  25. Sách bài tập Toán 12 (Kết nối tri thức): Bài tập ôn tập cuối năm
  26. Sách bài tập Toán 12 (Kết nối tri thức): Đề minh họa kiểm tra cuối học kì 2

  • Quên mật khẩu
  • Login
  • Đăng ký
Copyright © 2025 Cộng đồng học tập lớp 12
Back to Top
Menu
  • Thi đấu
  • Sitemap
Tài khoản

  • Đăng ký
  • Lost your password ?