Skip to content

Cộng đồng học tập lớp 12

  • Thi đấu
  • Sitemap

Cộng đồng học tập lớp 12

  • Home » 
  • Giải SBT Toán 12 – Chân trời

Sách bài tập Toán 12 Bài 3 (Chân trời sáng tạo): Biểu thức toạ độ của các phép toán vectơ

By Admin Lop12.com 19/02/2025

Giải SBT Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ

Bài 1 trang 76 SBT Toán 12 Tập 1: Tìm tọa độ ba vectơ a→,b→,c→ thỏa mãn a→=2i→+3j→−5k→, b→=−3j→+4k→, c→=−i→−2j→.

Lời giải:

Ta có: a→=2i→+3j→−5k→ suy ra a→ = (2; 3; −5).

           b→=−3j→+4k→ suy ra b→ = (0; −3; 4).

           c→=−i→−2j→ suy ra c→ = (−1; −2; 0).

Bài 2 trang 76 SBT Toán 12 Tập 1: Cho hình bình hành OABD có OA→ = (−1; 1; 0) và OB→ = (1; 1; 0) với O là gốc tọa độ. Tìm tọa độ của điểm D.

Lời giải:

Do OABD là hình bình hành với O là gốc tọa độ, nên

OD→=AB→=OB→−OA→=i→+j→−−i→+j→=2i→

Suy ra OD→ = (2; 0; 0) hay D(2; 0; 0).

Bài 3 trang 76 SBT Toán 12 Tập 1: Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn AB→ = (1; 2; 3) và AC→ = (−1; 4; −2).

Lời giải:

Gọi A(a; b; c).

Có G là trọng tâm nên GA→+GB→+GC→+GO→=0→

⇔GA→+GA→+AB→+GA→+AC→+GA→+AO→=0→

⇔ AB→+AC→+AO→=4AG→

Ta có: AB→ = (1; 2; 3), AC→ = (−1; 4; −2), AO→ = (−a; −b; −c),

⇒ AB→+AC→+AO→ = (−a; 6 – b; 1 – c).

          AG→ = (3 – a; −3 – b; 6 – c) ⇒ 4AG→ = (12 – 4a; −12 – 4b; 24 – 4c).

Do đó, −a=12−4a6−b=−12−4a1−c=24−4c⇒a=4b=−6c=233⇒ A4;−6;233

Bài 4 trang 76 SBT Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’ có A(2; 4; 0), B(4; 0; 0), C(−1; 4; −7) và D'(6; 8; 10). Tìm tọa độ của điểm B’.

Lời giải:

Do ABCD.A’B’C’D’ là hình hộp nên ta có AB→=DC→=(2;−4;0).

Gọi D(x; y; z) suy ra −1−x=24−y=−4−7−z=0⇒x=−3y=8z=−7 ⇒ D(−3; 8; −7).

Ta có: BB‘→=DD‘→=9;0;17

Gọi B'(a; b; c) suy ra a−4=9b−0=0c−0=17⇒a=13b=0c=17 ⇒ B'(13; 0; 17).

Bài 5 trang 76 SBT Toán 12 Tập 1: Cho điểm A(2; 2; 1). Tính độ dài đoạn thẳng OA.

Lời giải:

Ta có: A(2; 2; 1), suy ra OA = OA→ = 22+22+12 = 3.

Vậy OA = 3.

Bài 6 trang 76 SBT Toán 12 Tập 1: Cho điểm A(1; 2; 3). Tính khoảng cách từ A đến trục Oy.

Lời giải:

Hình chiếu của A(1; 2; 3) trên trục Oy là A'(0; 2; 0).

Khoảng cách từ A trên trục Oy là AA’ = 1−02+2−22+3−02 = 10

Bài 7 trang 76 SBT Toán 12 Tập 1: Cho điểm M(3; −1; 2). Tìm:

a) Tọa độ điểm M’ là điểm đối xứng của điểm M qua gốc tọa độ O.

b) Tọa độ điểm O’ là điểm đối xứng của điểm O qua điểm M.

c) Khoảng cách từ M đến gốc tọa độ.

d) Khoảng cách từ M đến mặt phẳng (Oxz).

Lời giải:

a) Tọa độ điểm M’ là điểm đối xứng của điểm M qua gốc tọa độ O là M'(−3; 1; −2).

b) O’ là điểm đối xứng của điểm O qua điểm M suy ra M là trung điểm của OO’.

Gọi O'(x; y; z) nên

 x+02=3y+02=−1z+02=2 ⇒ O'(6; −2; 4).

c) Khoảng cách từ M đến gốc tọa độ là MO = 3−02+−1−02+2−02 = 14.

d) Mặt phẳng (Oxz) là y = 0.

Khoảng cách từ M đến mặt phẳng (Oxz) là d(M, (Oxz)) = 3.0+1.−1+2.002+12+02 = 1.

Bài 8 trang 76 SBT Toán 12 Tập 1: Cho ba điểm A(0; 2; −1), B(−5; 4; 2), C(−1; 0; 5). Tìm tọa độ trọng tâm G của tam giác ABC.

Lời giải:

Gọi G(x; y; z) là trọng tâm tam giác ABC.

Ta có:

x=0+−5+−13=−2y=2+4+03=2z=−1+2+53=2⇒ G(−2; 2; 2).

Vậy G(−2; 2; 2).

Bài 9 trang 76 SBT Toán 12 Tập 1: Cho điểm M(a; b; c). Gọi A, B, C theo thứ tự là điểm đối xứng của điểm M qua các mặt phẳng (Oxy), (Oyz), (Oxz). Tìm tọa độ trọng tâm tam giác ABC.

Lời giải:

Ta có A đối xứng với M qua mặt phẳng (Oxy) nên A(a; b; −c).

          B đối xứng với M qua mặt phẳng (Oyz) nên B(−a; b; c).

          C đối xứng với M qua mặt phẳng (Oxz) nên C(a; −b; c).

Gọi G(x; y; z) là trọng tâm tam giác ABC.

Do đó,

x=a+−a+a3=a3y=b+b+−b3=b3z=−c+c+c3=c3  ⇒ Ga3;b3;c3.

Bài 10 trang 76 SBT Toán 12 Tập 1: Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian Oxyz được minh họa như Hình 3. Cho biết OABC.DEFH là hình hộp chữ nhật và EMF.DNH là hình lăng trụ đứng.

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà

a) Tìm tọa độ các điểm B, F, H.

b) Tìm tọa độ các vectơ ME→,MF→.

c) Tính số đo EMF^.

Lời giải:

a) Ta có OABC là hình chữ nhật nên OA→=CB→=6;0;0 ⇒ B(6; 4; 0).

              AEFB là hình chứ nhật nên AE→=BF→=0;0;4 ⇒ F(6; 4; 4).

              DEFH là hình chữ nhật nên ED→=FH→=6;0;0 ⇒ H(12; 4; 4).

b) Ta có: ME→ = (0; −2; −2); MF→ =  (0; 2; −2).

c) Ta có: cosEMF^ = ME→.MF→ME→.MF→=0.0+−2.2+−2.−202+−22+−22.02+22+−22=0.

⇒ EMF^ = 90°.

Lý thuyết Biểu thức toạ độ của các phép toán vectơ

1. Biểu thức tọa độ của tổng, hiệu hai vecto và tích của một số với một vecto

Trong không gian Oxyz, cho hai vecto a→=(x;y;z) và b→=(x′;y′;z′). Ta có:

  • a→+b→=(x+x′;y+y′;z+z′)
  • a→−b→=(x−x′;y−y′;z−z′)
  • ka→=(kx;ky;kz) với k là một số thực

2. Biểu thức tọa độ của tích vô hướng

Trong không gian Oxyz, tích vô hướng của hai vecto a→=(x;y;z) và b→=(x′;y′;z′) được xác định bởi công thức a→⋅b→=xx′+yy′+zz′

3. Vận dụng

a) Xác định tọa độ của vecto khi biết tọa độ điểm đầu và điểm cuối

Trong không gian Oxyz, cho hai điểm A(xA;yA;zA),B(xB;yB;zB). Ta có:

AB→=(xB−xA;yB−yA;zB−zA)

b) Tọa độ trung điểm đoạn thẳng. Tọa độ trọng tâm tam giác

Trong không gian Oxyz, cho ba điểm không thẳng hàng A(xA;yA;zA),B(xB;yB;zB),C(xC;yC;zC). Khi đó:

  • Tọa độ trung điểm của đoạn thẳng AB là (xA+xB2;yA+yB2;zA+zB2)
  • Tọa độ trọng tâm tam giác ABC là (xA+xB+xC2;yA+yB+yC2;zA+zB+zC2)

Sơ đồ tư duy Biểu thức toạ độ của các phép toán vectơ

Xem thêm các bài giải SBT Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Toạ độ của vectơ trong không gian

Bài 3: Biểu thức toạ độ của các phép toán vectơ

Bài tập cuối chương 2

Bài 1: Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm

Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm

Bài tập cuối chương 3

Tags : Tags 1. Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1   chi tiết)   Tập 2 (hay
Share
facebookShare on Facebook

Bài liên quan

Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 4

Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Phương trình mặt phẳng

Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Tính đơn điệu và cực trị của hàm số

Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Phương trình đường thẳng trong không gian

Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Sách bài tập Toán 12 Bài 3 (Chân trời sáng tạo): Phương trình mặt cầu

Sách bài tập Toán 12 Bài 3 (Chân trời sáng tạo): Đường tiệm cận của đồ thị hàm số

Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 5

Mục lục

  1. Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Tính đơn điệu và cực trị của hàm số
  2. Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
  3. Sách bài tập Toán 12 Bài 3 (Chân trời sáng tạo): Đường tiệm cận của đồ thị hàm số
  4. Sách bài tập Toán 12 Bài 4 (Chân trời sáng tạo): Khảo sát và vẽ đồ thị một số hàm số cơ bản
  5. Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 1
  6. Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Vectơ và các phép toán trong không gian
  7. Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Toạ độ của vectơ trong không gian
  8. Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 2
  9. Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm
  10. Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
  11. Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 3
  12. Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Nguyên hàm
  13. Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Tích phân
  14. Sách bài tập Toán 12 Bài 3 (Chân trời sáng tạo): Ứng dụng hình học của tích phân
  15. Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 4
  16. Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Phương trình mặt phẳng
  17. Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Phương trình đường thẳng trong không gian
  18. Sách bài tập Toán 12 Bài 3 (Chân trời sáng tạo): Phương trình mặt cầu
  19. Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 5
  20. Sách bài tập Toán 12 Bài 1 (Chân trời sáng tạo): Xác suất có điều kiện
  21. Sách bài tập Toán 12 Bài 2 (Chân trời sáng tạo): Công thức xác suất toàn phần và công thức Bayes
  22. Sách bài tập Toán 12 (Chân trời sáng tạo): Bài tập cuối chương 6

  • Quên mật khẩu
  • Login
  • Đăng ký
Copyright © 2025 Cộng đồng học tập lớp 12
Back to Top
Menu
  • Thi đấu
  • Sitemap
Tài khoản

  • Đăng ký
  • Lost your password ?