Câu hỏi:
Phương trình \(\left( {{m^2} – m} \right)x + m – 3 = 0\)là phương trình bậc nhất khi và chỉ khi
A.\(m \ne 0\)
B. \(m \ne 1\)
C. \(m \ne 0\) hoặc \(m \ne 1\)
D. \(m \ne 1\) và \(m \ne 0\)
Đáp án chính xác
Trả lời:
Phương trình \(\left( {{m^2} – m} \right)x + m – 3 = 0\)là phương trình bậc nhất khi và chỉ khi:
\(a = {m^2} – m \ne 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 1}\\{m \ne 0}\end{array}} \right.\)
Đáp án cần chọn là: D
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho phương trình \(ax + b = 0\). Chọn mệnh đề đúng: – ĐGNL-HN
Câu hỏi:
Cho phương trình \(ax + b = 0\). Chọn mệnh đề đúng:
A.Nếu \(a \ne 0\;\) thì phương trình vô nghiệm.
B.Nếu \(a = 0\;\) thì phương trình vô nghiệm.
C.Nếu \(a \ne 0\;\) thì phương trình có nghiệm duy nhất
Đáp án chính xác
D.Nếu \(b \ne 0\;\) thì phương trình có nghiệm.
Trả lời:
– Nếu \(a \ne 0\;\) thì phương trình có nghiệm \(x = – \frac{b}{a}\).
– Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm.
– Nếu a = 0 và \(b \ne 0\) thì phương trình vô nghiệm.
Từ đó C đúng.
Đáp án cần chọn là: C====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình \(a{x^2} + bx + c = 0\;\) có nghiệm duy nhất khi và chỉ khi: – ĐGNL-HN
Câu hỏi:
Phương trình \(a{x^2} + bx + c = 0\;\) có nghiệm duy nhất khi và chỉ khi:
A.\(\Delta = 0\).
B.\(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta = 0}\end{array}} \right.\) hoặc \(\left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b \ne 0}\end{array}} \right.\)
Đáp án chính xác
C. a = b = 0.
D. \(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta = 0}\end{array}} \right.\)
Trả lời:
– TH1: Nếu \(a \ne 0\) thì phương trình có nghiệm duy nhất ⇔Δ=0⇔Δ=0.
– TH2: Nếu a = 0 thì phương trình trở thành \(bx + c = 0\) có nghiệm duy nhất\( \Leftrightarrow b \ne 0\).
Đáp án cần chọn là: B====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình \({x^2} – \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0\) – ĐGNL-HN
Câu hỏi:
Phương trình \({x^2} – \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0\)
A.Có 2 nghiệm trái dấu
B.Có 2 nghiệm âm phân biệt
C.Có 2 nghiệm dương phân biệt.
Đáp án chính xác
D.Vô nghiệm
Trả lời:
Ta có: \({x^2} – \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0 \Leftrightarrow \left( {{x^2} – 2x} \right) – \left( {\sqrt 3 x – 2\sqrt 3 } \right) = 0\)
\( \Leftrightarrow x\left( {x – 2} \right) – \sqrt 3 \left( {x – 2} \right) = 0 \Leftrightarrow \left( {x – 2} \right)\left( {x – \sqrt 3 } \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = \sqrt 3 }\end{array}} \right.\)
Vậy phương trình có hai nghiệm dương phân biệt.
Đáp án cần chọn là: C====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình \({x^2} + m = 0\;\) có nghiệm khi và chỉ khi: – ĐGNL-HN
Câu hỏi:
Phương trình \({x^2} + m = 0\;\) có nghiệm khi và chỉ khi:
A.m >0.
B.m < 0.
C.m ≤ 0.
Đáp án chính xác
D.m ≥ 0.
Trả lời:
Xét \({x^2} + m = 0\)
Phương trình có nghiệm khi \({\rm{\Delta }} \ge 0 \Leftrightarrow – 4m \ge 0 \Leftrightarrow m \le 0\)
Đáp án cần chọn là: C====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho phương trình \(a{x^2} + bx + c = 0\) Đặt \(S = – \frac{b}{a},P = \frac{c}{a}\), hãy chọn khẳng định sai trong các khẳng định sau: – ĐGNL-HN
Câu hỏi:
Cho phương trình \(a{x^2} + bx + c = 0\) Đặt \(S = – \frac{b}{a},P = \frac{c}{a}\), hãy chọn khẳng định sai trong các khẳng định sau:
A.Nếu P < 0 thì (1)(1) có 2 nghiệm trái dấu.
B.Nếu P >0 và S < 0 thì (1) có 2 nghiệm
Đáp án chính xác
C.Nếu P >0 và S < 0 và \(\Delta >0\;\) thì (1) có 2 nghiệm âm phân biệt.
D.Nếu P >0 và S >0 0 và \(\Delta >0\;\) thì (1) có 2 nghiệm dương phân biệt.
Trả lời:
Đáp án A: Nếu \(P < 0 \Rightarrow ac < 0\) nên phương trình có hai nghiệm trái dấu.
Đáp án B: Ta xét phương trình \({x^2} + x + 1 = 0\) có \(P = 1 >0,S < 0\) nhưng lại vô nghiệm nên B sai.
Đáp án C, D: Nếu\({\rm{\Delta }} >0\) thì phương trình có hai nghiệm phân biệt. khi đó S,P lần lượt là tổng và tích hai nghiệm của phương trình. Do đó:
+) Nếu P >0 và S < 0 thì (1) có 2 nghiệm âm phân biệt.
+) Nếu P >0 và S >0 thì (1) có 2 nghiệm dương phân biệt.
Đáp án cần chọn là: B====== **** mời các bạn xem câu tiếp bên dưới **** =====