Tính limx→01+2x.1+3×3.1+4×4−1x
Câu hỏi: Tính limx→01+2x.1+3x3.1+4x4−1x A.232 B.24 C.32 D.3 Đáp án chính xác Trả lời: Ta có: 1+2x.1+3x3.1+4x4−1=1+2x−1+2x+1+2x.1+3x3−1+2x.1+3x3+1+2x.1+3x3.1+4x4−1=1+2x−1+1+2x1+3x3−1+1+2x.1+3x3.1+4x4−1 ⇒limx→01+2x.1+3x3.1+4x4−1x=limx→01+2x−1x+limx→01+2x.1+3x3−1x+limx→01+2x.1+3x3.1+4x4−1x Tính: limx→01+2x−1x=limx→01+2x−11+2x+1x1+2x+1=limx→02xx1+2x+1=limx→021+2x+1=21+1=1 limx→01+2x.1+3x3−1x=limx→01+2x.1+3x3−11+3x32+1+3x3+1x.1+3x32+1+3x3+1=limx→01+2x.3xx.1+3x32+1+3x3+1=limx→031+2x1+3x32+1+3x3+1=3.11+1+1=3…