Skip to content

Học tập lớp 12

  • Thi đấu
  • Sitemap

Học tập lớp 12

  • Home » 
  • Giải SGK Toán 12 – Cánh diều

Giải SGK Toán 12 Bài 2 (Cánh diều): Công thức xác suất toàn phần. Công thức Bayes

By Admin Lop12.com 18/02/2025

Giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes

Câu hỏi khởi động trang 97 Toán 12 Tập 2: Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55

Tiêu chuẩn

Linh kiện

Đạt tiêu chuẩn

Không đạt tiêu chuẩn

Nhà máy I sản xuất

4 950

550

Nhà máy II sản xuất

3 915

585

 

Xét hai biến cố sau:

A: “Linh kiện được chọn ra đạt tiêu chuẩn”;

B: “Linh kiện được chọn ra do nhà máy I sản xuất”.

Khi đó, ta có:

P(B) = 0,55; P(B¯ ) = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A | B¯ ) = 0,87.

Áp dụng công thức xác suất toàn phần, ta có:

P(A) = P(B) ∙ P(A | B) + P( B¯) ∙ P(A | B¯ ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.

Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.

Luyện tập 2 trang 100 Toán 12 Tập 2: Hãy giải bài toán trong phần mở đầu bằng phương pháp sử dụng sơ đồ hình cây như trong Ví dụ 3.

Lời giải:

Xét hai biến cố sau:

A: “Linh kiện được chọn ra đạt tiêu chuẩn”;

B: “Linh kiện được chọn ra do nhà máy I sản xuất”.

Khi đó, ta có:

P(B) = 0,55; P(B¯ ) = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A | B¯ ) = 0,87.

Sơ đồ hình cây biểu thị tình huống đã cho là:

Luyện tập 2 trang 100 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Áp dụng công thức xác suất toàn phần, ta có:

P(A) = P(B) ∙ P(A | B) + P( B¯) ∙ P(A | B¯ ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.

Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.

Hoạt động 2 trang 100 Toán 12 Tập 2: Xét hai biến cố A, B trong Hoạt động 1.

a) Tính: P(A), P(B), P(A | B) và P(B | A).

b) So sánh: P(B | A) và PB⋅PA|BPA

Lời giải:

a) Ta có: P(A) = nAnΩ = 824=13 ; P(B) = nBnΩ = 624=14 ;

P(A | B) = nA∩BnB=26=13 ; P(B | A) = nA∩BnA=28=14 .

b) Ta có: PB⋅PA|BPA=14⋅1313=14= P(B | A).

Luyện tập 3 trang 101 Toán 12 Tập 2: Cho hai biến cố A, B sao cho P(A) = 0,4; P(B) = 0,8; P(B | A) = 0,3. Tính P(A | B).

Lời giải:

Áp dụng công thức Bayes, ta có:

P(A | B) = PA⋅PB|APB=0,4⋅0,30,8=0,15

Luyện tập 4 trang 101 Toán 12 Tập 2: Được biết có 5

Tags : Tags 1. Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1   chi tiết)   Tập 2 (hay
Share
facebookShare on Facebook

Bài liên quan

Giải SGK Toán 12 Bài 2 (Cánh diều): Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm

Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 3 trang 93

Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)

Giải SGK Toán 12 Bài 1 (Cánh diều): Nguyên hàm

Giải sgk Toán 12 Chân trời sáng tạo | Giải bài tập Toán 12 Chân trời sáng tạo Tập 1, Tập 2 (hay, chi tiết)

Giải SGK Toán 12 Bài 2 (Cánh diều): Nguyên hàm của mốt số hàm số sơ cấp

Giải sgk Toán 12 Cánh diều | Giải bài tập Toán 12 Cánh diều Tập 1, Tập 2 (hay, chi tiết)

Giải SGK Toán 12 Bài 3 (Cánh diều): Tích phân

  • Quên mật khẩu
  • Login
  • Đăng ký
Copyright © 2026 Học tập lớp 12 - Sách Toán
Back to Top
Menu
  • Thi đấu
  • Sitemap
Tài khoản

  • Lost your password ?