Giải Chuyên đề Toán 12 Bài tập cuối chuyên đề 2
Câu hỏi trắc nghiệm
Bài 1 trang 50 Chuyên đề Toán 12: Trong chuyển đổi giữa các đơn vị tiền tệ, phương thức được sử dụng phổ biến nhất là
A. Sản lượng tiền tệ.
B. Tỉ giá hối đoái.
C. Tỉ lệ mua hàng hoá.
D. Biểu đồ lịch sử giá.
Lời giải:
Đáp án đúng là: B
Trong chuyển đổi giữa các đơn vị tiền tệ, phương thức được sử dụng phổ biến nhất là tỉ giá hối đoái.
Bài 2 trang 50 Chuyên đề Toán 12: Trong nền kinh tế, chỉ số lạm phát giúp đo lường
A. Sản lượng tiền tệ.
B. Tỉ lệ thất nghiệp.
C. Sự gia tăng giá cả hàng hoá và dịch vụ.
D. Tăng trưởng kinh tế hằng năm.
Lời giải:
Đáp án đúng là: C
Trong nền kinh tế, chỉ số lạm phát giúp đo lường sự gia tăng giá cả hàng hoá và dịch vụ.
Bài 3 trang 50 Chuyên đề Toán 12: Lãi suất danh nghĩa của một khoản vay là 12%/năm, tỉ lệ lạm phát là 4% mỗi năm. Lãi suất thực hằng năm của khoản vay đó là
A. 48%.
B. 8%.
C. 16%.
D. 3%.
Lời giải:
Đáp án đúng là: B
Lãi suất danh nghĩa là R = 12%, tỉ lệ lạm phát là i = 4%.
Lãi suất thực là:
Thực tế, ta có lãi suất thực có thể tính như sau: r’ = R – r = 12% – 4% = 8%.
Bài 4 trang 50 Chuyên đề Toán 12: Nếu đầu năm bạn gửi 100 triệu đồng vào ngân hàng với lãi suất danh nghĩa là 9%/năm, tỉ lệ lạm phát là 3%. Số tiền (triệu đồng) bạn nhận được cuối năm tương đương với số tiền lúc đầu năm là
A. 103.
B. 109.
C. 112.
D. 106.
Lời giải:
Đáp án đúng là: D
Lãi suất danh nghĩa là R = 9%, tỉ lệ lạm phát là i = 3%.
Lãi suất thực là:
Số tiền nhận được cuối năm là: 100 . (1 + 5,83%) = 105,83 ≈ 106 (triệu đồng).
Bài 5 trang 50 Chuyên đề Toán 12: Ông An gửi tiết kiệm 1 tỉ đồng theo phương thức tính lãi kép với lãi suất 6%/năm cho kì trả lãi 1 năm. Tổng số tiền (tỉ đồng) cả vốn và lãi ông An nhận được sau 10 năm là
A. 1,6.
B. 1,791.
C. 1,952.
D. 2,047.
Lời giải:
Đáp án đúng là: B
Tổng số tiền (tỉ đồng) cả vốn và lãi ông An nhận được sau 10 năm là:
F = 1 . (1 + 6%)10 ≈ 1,791 (tỉ đồng).
Bài 6 trang 50 Chuyên đề Toán 12: Trường A có các ngành học với các gói học phí như sau:
Gói 1: 150 triệu đồng; Gói 2: 200 triệu đồng;
Gói 3: 250 triệu đồng; Gói 4: 300 triệu đồng.
Để chuẩn bị tiền sau 3 năm nữa cho con lựa chọn ngành học phù hợp với các gói học phí như trên, ông Đức đã gửi 1 tỉ đồng vào ngân hàng theo phương thức tính lãi kép với lãi suất 8%/năm, kì trả lãi 1 năm. Với số tiền lãi ông Đức nhận được sau 3 năm, số nguyện vọng tối đa mà con ông Đức có thể chọn được phù hợp với các gói học phí trên là
A. 1.
B. 2.
C. 3.
D. 4.
Lời giải:
Đáp án đúng là: A
Ta có P = 1 tỉ đồng = 1 000 (triệu đồng); r = 8%; n = 3.
Sau 3 năm, số tiền lãi ông Đức nhận được là:
1 000 . [(1 + 8%)3 – 1] = 259,712 (triệu đồng).
Vậy con ông Đức có thể chọn gói 1 hoặc gói 2, tức số nguyện vọng tối đa là 1.
Bài 7 trang 50 Chuyên đề Toán 12: Bà Nhung muốn có 500 triệu đồng trong vòng 5 năm, bằng cách gửi tiết kiệm vào ngân hàng B với lãi suất 8%/năm theo phương thức tính lãi kép với kì hạn 1 năm. Số tiền (triệu đồng) mỗi tháng bà Nhung cần gửi tiết kiệm vào ngân hàng B để đạt mục tiêu tài chính nói trên là
A. 69.
B. 78.
C. 86.
D. 96.
Lời giải:
Đáp án đúng là:
Theo kết quả của câu a, Ví dụ 3, Sách Chuyên đề học tập Toán 12, trang 41, trang 42, ta có: với F là số tiền thu được ở cuối dòng tiền (giá trị tương lai của dòng tiền) và A là số tiền gửi tiết kiệm mỗi tháng với lãi suất kép r%/tháng trong n tháng.
Thay F = 500 (triệu đồng); n = 5. 12 = 60, ta có:
Suy ra A ≈ 6,805 (triệu đồng).
Bài 8 trang 50 Chuyên đề Toán 12: Để lập kế hoạch tài chính cá nhân, điều quan trọng nhất là
A. Xác định mục tiêu tài chính của bạn.
B. Lượng tiền thu nhập của bạn.
C. Số tiền tiết kiệm hiện có của bạn.
D. Số nợ hiện tại của bạn.
Lời giải:
Đáp án đúng là: A
Để lập kế hoạch tài chính cá nhân, điều quan trọng nhất là xác định mục tiêu tài chính của bạn.
Bài 9 trang 50 Chuyên đề Toán 12: Bạn muốn tiết kiệm tiền, điều bạn nên làm là
A. Mua nhiều đồ đắt tiền hơn.
B. Đi ăn ngoài thường xuyên.
C. Đi làm thêm để tăng thu nhập.
D. Cắt giảm chi tiêu không cần thiết.
Lời giải:
Đáp án đúng là: D
Bạn muốn tiết kiệm tiền, điều bạn nên làm là cắt giảm chi tiêu không cần thiết.
Bài 10 trang 50 Chuyên đề Toán 12: Bạn mua một trái phiếu có mệnh giá 1 000 USD với lãi suất 5%/năm và thời hạn 10 năm. Nếu lãi được trả theo phương thức lãi đơn, số tiền lãi (USD) nhận được sau 10 năm là
A. 500.
B. 1 500.
C. 629.
D. 1 629.
Lời giải:
Đáp án đúng là: A
Số tiền lãi (USD) nhận được sau 10 năm là:
1 000 . 5% . 10 = 500 (USD).
Bài tập tự luận
Bài 11 trang 51 Chuyên đề Toán 12: Tỉ lệ phần trăm giá cả trung bình của hàng hoá và dịch vụ của Việt Nam năm sau so với năm trước được cho trong bảng sau:
Năm |
2017 |
2018 |
2019 |
2020 |
2021 |
Tỉ lệ phần trăm giá cả trung bình so với năm trước |
103,53 |
103,54 |
102,79 |
103,23 |
101,84 |
(Nguồn: Tổng cục Thống kê)
Hãy tính tỉ lệ lạm phát của Việt Nam trong các năm từ 2017 đến 2021.
Lời giải:
Năm |
2017 |
2018 |
2019 |
2020 |
2021 |
Tỉ lệ lạm phát (%) |
3,53 |
3,54 |
2,79 |
3,23 |
1,84 |
Bài 12 trang 51 Chuyên đề Toán 12: Ông Đạt đem gửi hai khoản tiền vào hai ngân hàng khác nhau. Khoản tiền thứ nhất gửi vào ngân hàng A trong 15 tháng, lãi suất 14%/năm. Khoản tiền thứ hai gửi vào ngân hàng B trong 12 tháng với lãi suất 12,5%/năm. Cho biết hai khoản tiền trên chênh lệch nhau 30 triệu đồng, lãi của khoản tiền thứ nhất gấp đôi lãi của khoản tiền thứ hai và cả hai khoản tiền đều tính lãi theo phương thức lãi đơn. Hãy tính khoản tiền ông Đạt gửi ở mỗi ngân hàng.
Lời giải:
Gọi x và y lần lượt là khoản tiền ông Đạt gửi ở ngân hàng A và B (triệu đồng) (x > 0, y > 0).
Số tiền lãi ông Đạt nhận được từ ngân hàng A sau 15 tháng là:
(triệu đồng).
Số tiền lãi ông Đạt nhận được từ ngân hàng B sau 12 tháng là:
(triệu đồng).
Theo bài, 0,175x = 2 . 0,125y, do đó (*) nên x > y.
Mà hai khoản tiền trên chênh lệch nhau 30 triệu đồng nên ta có x = y + 30, thay vào (*) ta được:
(thỏa mãn).
Suy ra x = 70 + 30 = 100 (thỏa mãn).
Vậy khoản tiền ông Đạt gửi ở ngân hàng A và B lần lượt là 100 triệu đồng và 70 triệu đồng.
Bài 13 trang 51 Chuyên đề Toán 12: Giả sử bạn đang sử dụng thẻ tín dụng tại ngân hàng D có thời gian miễn lãi là 45 ngày, với chu kì thanh toán từ ngày 12/9 đến ngày 12/10, ngày đến hạn thanh toán là 27/10. Trong đó, lãi suất áp dụng là 16%/năm và số dư nợ tối thiểu cần thanh toán là 4% tổng số tiền chi tiêu. Phí trả chậm bằng 2% số dư nợ tối thiểu cần trả và tối thiểu là 200 000 đồng. Thẻ của bạn không có dư nợ đầu kì và trong 30 ngày vừa qua bạn đã thực hiện các chi tiêu:
⦁ Ngày 18/9: Bạn thanh toán mua sách 2 triệu đồng. Số dư nợ 1 là 2 triệu đồng.
⦁ Ngày 8/10: Bạn thanh toán tiền điện thoại 1 triệu đồng. Số dư nợ 2 là 3 triệu đồng.
⦁ Ngày 01/11: Bạn trả ngân hàng 1 triệu đồng. Số dư nợ 3 (số nợ còn lại) là 2 triệu đồng.
Tính số tiền lãi phát sinh từ dịch vụ sử dụng thẻ tín dụng nói trên đến ngày 01/11.
Lời giải:
Do bạn đã không trả đủ toàn bộ số dư nợ và khoản thanh toán tối thiểu tại thời điểm ngày 27/10 nên số tiền lãi sẽ bị tính gồm có:
⦁ Số dư nợ 1 từ ngày 18/9 đến ngày 08/10 nên số tiền lãi phải trả là:
(đồng).
⦁ Số dư nợ 2 từ ngày 08/10 đến ngày 01/11 nên số tiền lãi phải trả là:
(đồng).
⦁ Tính phí trả chậm:
(4% . 3 000 000) . 2% = 2 400 < 200 000.
Nên tính phí trả chậm là: 200 000 đồng.
Vậy tổng số tiền lãi và phí phát sinh mà bạn cần phải trả đến ngày 01/11 là:
17 534 + 31 562 + 200 000 = 249 096 (đồng).
Ngoài ra, số tiền 2 triệu đồng vẫn bị tính tiếp lãi cho tới thời điểm bạn thanh toán cho ngân hàng.
Bài 14 trang 51 Chuyên đề Toán 12: Đầu mỗi năm ông Hải đều gửi tiết kiệm 500 triệu đồng vào ngân hàng với hình thức lãi kép kì hạn một năm. Tìm số tiền ông Hải có được sau 5 năm, nếu lãi suất của ngân hàng là:
a) 8%/năm;
b) 14%/năm.
Lời giải:
a) Ta có P = 500 (triệu đồng); r = 8%; n = 5.
Số tiền lãi ông Hải nhận được sau 5 năm tính theo hình thức lãi kép là:
500 . [(1 + 8%)5 – 1] ≈ 234,664 (triệu đồng).
b) Ta có P = 500 (triệu đồng); r = 14%; n = 5.
Số tiền lãi ông Hải nhận được sau 5 năm tính theo hình thức lãi kép là:
500 . [(1 + 14%)5 – 1] ≈ 462,707 (triệu đồng).
Bài 15 trang 51 Chuyên đề Toán 12: Bác Tâm có hai thẻ tín dụng, có chế độ hoàn tiền khác nhau.
Thẻ tín dụng A tính lãi kép 22%/năm (tính lãi kép theo ngày) kèm theo khuyến mãi 52 ngày không tính lãi.
Thẻ tín dụng B tính lãi kép 19%/năm (tính lãi kép theo ngày) nhưng chỉ tặng thêm 40 ngày không tính lãi.
Bác Tâm dự định dùng thẻ để mua một chiếc ti vi có giá 20 triệu đồng vào đúng ngày kích hoạt thẻ để có thể hưởng tối đa số ngày không tính lãi. Hãy cho biết bác Tâm nên sử dụng thẻ nào để thanh toán cho cửa hàng trong trường hợp bác Tâm chỉ có thể hoàn tiền cho ngân hàng sau ngày mua một số ngày sau đây:
a) 30 ngày;
b) 60 ngày;
c) 90 ngày;
d) 240 ngày.
Lời giải:
a) Bác Tâm có thể sử dụng cả hai loại thẻ tín dụng A và B để thanh toán cho cửa hàng vì 30 ngày đều nhỏ hơn số ngày không tính lãi của cả hai thẻ tín dụng nên ngân hàng sẽ không tính lãi.
b) Số tiền lãi bác Tâm phải trả cho ngân hàng khi sử dụng thẻ tín dụng A là:
(triệu đồng).
Số tiền lãi bác Tâm phải trả cho ngân hàng khi sử dụng thẻ tín dụng B là:
(triệu đồng).
Ta thấy 0,0964 < 0,208 do đó đối với trường hợp này, bác Tâm nên sử dụng thẻ tín dụng A.
c) Số tiền lãi bác Tâm phải trả cho ngân hàng khi sử dụng thẻ tín dụng A là:
(triệu đồng).
Số tiền lãi bác Tâm phải trả cho ngân hàng khi sử dụng thẻ tín dụng B là:
(triệu đồng).
Ta thấy 0,458 < 0,521 do đó đối với trường hợp này, bác Tâm nên sử dụng thẻ tín dụng A.
d) Số tiền lãi bác Tâm phải trả cho ngân hàng khi sử dụng thẻ tín dụng A là:
(triệu đồng).
Số tiền lãi bác Tâm phải trả cho ngân hàng khi sử dụng thẻ tín dụng B là:
(triệu đồng).
Ta thấy 2,266 > 2,082 do đó đối với trường hợp này, bác Tâm nên sử dụng thẻ tín dụng B.
Bài 16 trang 51 Chuyên đề Toán 12: Bác Hà sở hữu 500 cổ phiếu trong công ty B sản xuất máy bơm. Cho biết giá một cổ phiếu của công ty B là 4 500 đồng và công ty công bố chia cổ tức 500 đồng cho mỗi cổ phiếu.
a) Tính tổng số tiền cổ tức bác Hà nhận được.
b) Tính tỉ suất sinh lời cổ phiếu của công ty B.
Lời giải:
a) Tổng số tiền cổ tức bác Hà nhận được là:
500 . 500 = 250 000 (đồng).
b) Tỉ suất sinh lời cổ phiếu của công ty B là:
Bài 17 trang 52 Chuyên đề Toán 12: Cho biết thông tin về một số cổ phiếu theo mã và ngành như sau:
a) Vào ngày 03/4/2013, bác Hiền đầu tư bằng cách mua 20 000 cổ phiếu ICC với giá mỗi cổ phiếu là 12 000 đồng. Đến ngày 03/4/2023, bác Hiền bán hết số cổ phiếu nói trên. Hãy tính tổng số tiền lời mà bác Hiền thu được từ việc cổ phiếu tăng giá và tiền cổ tức được chia hằng năm.
b) Vào ngày 03/4/2018, cô Trang đã mua 28 000 cổ phiếu PAT với giá mỗi cổ phiếu là 61 480 đồng. Đến ngày 03/4/2023, cô Trang bán hết số cổ phiếu nói trên. Hãy tính tổng số tiền lời mà cô Trang thu được từ việc cổ phiếu tăng giá và tiền cổ tức được chia hằng năm.
Lời giải:
a) Số tiền vốn bác Hiền đầu tư mua cổ phiếu ICC là:
20 000 . 12 000 = 240 000 000 (đồng).
Số tiền bác Hiền thu được từ việc bán hết cổ phiếu ICC là:
20 000 . 24 000 = 480 000 000 (đồng).
Tổng số tiền lời bác Hiền thu được từ việc cổ phiếu tăng giá là:
480 000 000 – 240 000 000 = 240 000 000 (đồng).
Tổng số tiền cổ tức bác Hiền nhận được mỗi năm là:
20 000 . 5 340 = 106 800 000 (đồng).
b) Số tiền vốn cô Trang đầu tư mua cổ phiếu PAT là:
28 000 . 61 480 = 1 721 440 000 (đồng).
Số tiền cô Trang thu được từ việc bán hết cổ phiếu PAT là:
28 000 . 91 480 = 2 561 440 000 (đồng).
Tổng số tiền lời cô Trang thu được từ việc cổ phiếu tăng giá là:
2 561 440 000 – 1 721 440 000 = 840 000 000 (đồng).
Tổng số tiền cổ tức cô Trang nhận được mỗi năm là:
28 000 . 30 655 = 858 340 000 (đồng).
Bài 18 trang 52 Chuyên đề Toán 12: Công ty C đầu tư 10 tỉ đồng vào một quỹ đầu tư trong thời gian 10 năm với hợp đồng như sau:
– Lãi suất 14%/năm (tính lãi kép theo nửa năm) cho 4 năm đầu tiên.
– Lãi suất 12%/năm (tính lãi kép theo quý) cho 3 năm tiếp theo.
– Lãi suất 10%/năm (tính lãi kép theo tháng) cho 3 năm cuối.
Vậy giá trị tích luỹ sau 10 năm của công ty B sẽ là bao nhiêu?
Lời giải:
⦁ 4 năm đầu tiên:
Ta có P = 10 tỉ đồng = 10 000 (triệu đồng); n = 4 . 2 = 8.
Số tiền cả vốn và lãi công ty C nhận được là:
10 000 . (1 + 7%)8 = 17 181,8618 (triệu đồng).
⦁ 3 năm tiếp theo:
Ta có P = 17 181,8618 (triệu đồng);
Số tiền cả vốn và lãi công ty C nhận được là:
17 181,8618 . (1 + 3%)12 ≈ 24 497,22652 (triệu đồng).
⦁ 3 năm cuối:
Ta có P = 24 497,22652 (triệu đồng); n = 3 . 12 = 36.
Số tiền cả vốn và lãi công ty C nhận được là:
(triệu đồng).
Vậy sau 10 năm, công ty C tích lũy được khoảng 33 026 716 000 đồng.
Bài 19 trang 52 Chuyên đề Toán 12: Dựa trên các thông tin sau đây:
Anh An:
Chị Lan:
a) Lập bảng ngân sách hằng tháng của anh An và chị Lan.
b) Lập kế hoạch tài chính giúp anh An đạt mục tiêu có được 30 triệu đồng trong vòng một năm để theo học một khóa học tiếng Anh.
c) Lập kế hoạch tài chính giúp chị Lan đạt mục tiêu có được 10 triệu đồng trong vòng một năm để theo học một khoá dạy bán hàng trực tuyến.
d) Anh An có thể tạo ra một dòng tiền trong 36 tháng bằng cách mỗi tháng gửi 1 triệu đồng tiết kiệm được từ ngân sách vào ngân hàng với lãi suất 6%/năm theo phương thức tính lãi kép cho kì hạn 1 tháng (kì trả lãi theo tháng). Tính số tiền anh An thu được vào cuối dòng tiền.
Lời giải:
a) Dựa trên các thông tin trên ta có thể lập bảng ngân sách cho anh An và chị Lan như sau:
b) Dưới đây là một kế hoạch tài chính cá nhân cho anh An để đạt được mục tiêu:
– Xác định mục tiêu tiết kiệm: Tiết kiệm đủ 30 triệu đồng trong vòng 12 tháng để có đủ tiền theo học một khóa học tiếng Anh.
– Điều tra tình hình tài chính hiện tại: Thu nhập hằng tháng của anh An là 6 000 000 đồng, chi phí hằng tháng của anh An là 5 000 000 đồng.
– Xây dựng kế hoạch chi tiêu hằng tháng: Tổng chi phí hằng tháng của anh An là 5 000 000 đồng. Hãy xem xét cách giảm chi phí hằng tháng để có thể tiết kiệm được 2 500 000 đồng mỗi tháng:
+ Giảm tiền điện thoại: Đăng kí gói gọi, gói data, … của nhà mạng.
+ Giảm chi phí ăn uống: Hãy tìm kiếm các món ăn giá rẻ hơn và nấu ăn tại nhà thay vì ăn ngoài.
+ Giảm tiêu vặt: Hãy cân nhắc các chi tiêu không cần thiết và hạn chế việc mua sắm các món đồ không cần thiết.
+ Giảm chi phí đi lại: Hãy xem xét việc đi bộ hoặc sử dụng phương tiện công cộng để giảm chi phí đi lại.
– Xác định nguồn tiết kiệm hằng tháng: Anh An có thể tiết kiệm được khoảng 1 000 000 đồng mỗi tháng.
– Tính toán nguồn tiết kiệm còn thiếu: Sau khi trừ đi chi phí hằng tháng và các nguồn tiết kiệm đã có, anh An cần tiết kiệm thêm khoảng 1 500 000 đồng mỗi tháng để đạt được mục tiêu 30 triệu đồng sau 12 tháng.
Với kế hoạch tài chính cá nhân này, anh An có thể đạt được mục tiêu tài chính của mình.
c) Dưới đây là một kế hoạch tài chính cá nhân cho chị Lan để đạt được mục tiêu:
– Xác định mục tiêu tiết kiệm: Tiết kiệm đủ 10 triệu đồng trong vòng 12 tháng để có đủ tiền theo học một khóa dạy bán hàng trực tuyến.
– Điều tra tình hình tài chính hiện tại: Thu nhập hằng tháng của chị Lan là 4 000 000 đồng, chi phí hằng tháng của chị Lan là 6 000 000 đồng.
– Xây dựng kế hoạch chi tiêu hằng tháng: Tổng chi phí hằng tháng của chị Lan là 6 000 000 đồng. Hãy xem xét cách giảm chi phí hằng tháng để có thể tiết kiệm được khoảng 833 000 đồng mỗi tháng:
+ Giảm tiền điện thoại: Đăng kí gói gọi, gói data, … của nhà mạng.
+ Giảm chi phí ăn uống: Hãy tìm kiếm các món ăn giá rẻ hơn và nấu ăn tại nhà thay vì ăn ngoài.
+ Giảm tiêu vặt: Hãy cân nhắc các chi tiêu không cần thiết và hạn chế việc mua sắm các món đồ không cần thiết.
+ Giảm chi phí đi lại: Hãy xem xét việc đi bộ hoặc sử dụng phương tiện công cộng để giảm chi phí đi lại.
+ Giảm chi phí xem ca nhạc: Xem ca nhạc qua ti vi hoặc youtube thay vì đi xem buổi biểu diễn.
– Tính toán nguồn tiết kiệm còn thiếu: Sau khi trừ đi chi phí hằng tháng, chị Lan cần tiết kiệm khoảng 2 833 000 đồng mỗi tháng để đạt được mục tiêu 10 triệu đồng sau 12 tháng.
Với kế hoạch tài chính cá nhân này, chị Lan có thể đạt được mục tiêu tài chính của mình.
d) Theo kết quả của câu a, Ví dụ 3, Sách Chuyên đề học tập Toán 12, trang 41, trang 42, ta có: với F là số tiền thu được ở cuối dòng tiền (giá trị tương lai của dòng tiền) và A là số tiền gửi tiết kiệm mỗi tháng với lãi suất kép r%/tháng trong n tháng.
Thay A = 1 (triệu đồng); n = 36, ta có:
Suy ra F ≈ 39,336 (triệu đồng).
Vậy số tiền anh An thu được vào cuối dòng tiền khoảng 39,336 triệu đồng.
Xem thêm các bài giải Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Đầu tư tài chính. Lập kế hoạch tài chính cá nhân
Bài tập cuối chuyên đề 2
Bài 1: Biến ngẫu nhiên rời rạc
Bài 2: Phân bố Bernoulli và phân bố nhị thức
Bài tập cuối chuyên đề 3