• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Cộng đồng học tập lớp 12

Cộng đồng học tập lớp 12

Trắc nghiệm bài học, bài tập, kiểm tra và đề thi cho học sinh lớp 12.

Login
  • Trắc nghiệm 12
  • Khoá học
  • Đăng ký

Toa do oxyz - DGNL HN

Lý thuyết phần các bài toán về đường thẳng và mặt cầu thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Vị trí tương đối của đường thẳng và mặt cầuCho mặt cầu \(\left( S \right)\) tâm \(I\), bán kính \(R\) và đường thẳng \(\Delta \) (đi qua \(M\) và có VTCP \(\overrightarrow u \)). Khi đó: +) \(\Delta  \cap \left( S \right) = \emptyset  \Leftrightarrow d\left( {I,\Delta } \right) > R\). +) \(\Delta  \cap \left( S \right) = \left\{ H \right\} \Leftrightarrow d\left( … [Đọc thêm...] vềLý thuyết phần các bài toán về đường thẳng và mặt cầu thi ĐGNL ĐHQG HN

Lý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Vị trí tương đối giữa mặt phẳng và mặt cầuCho mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right)\) tâm \(I\) bán kính \(R\). Khi đó: - \(\left( S \right) \cap \left( P \right) = \emptyset  \Leftrightarrow d\left( {I,\left( P \right)} \right) > R\). - \(\left( S \right) \cap \left( P \right) = \left\{ H \right\} \Leftrightarrow d\left( {I,\left( P \right)} … [Đọc thêm...] vềLý thuyết phần các bài toán về mặt phẳng và mặt cầu thi ĐGNL ĐHQG HN

Lý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Các dạng phương trình mặt cầu- Dạng 1: Phương trình chính tắc của mặt cầu tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\)     (1) - Dạng 2: Phương trình tổng quát của mặt cầu \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\)    (2) Phương trình (2) có tâm \(I\left( { - a; … [Đọc thêm...] vềLý thuyết phần phương trình mặt cầu thi ĐGNL ĐHQG HN

Lý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

Một số dạng phương trình đường thẳng liên quan đến mặt phẳng. +) Đi qua một điểm và vuông góc với một mặt phẳng. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) - Đường thẳng \(d\) đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) thì nó nhận \(\overrightarrow {{u_d}}  = \overrightarrow {{n_P}} \) làm VTCP. +) … [Đọc thêm...] vềLý thuyết phần các bài toán về đường thẳng và mặt phẳng thi ĐGNL ĐHQG HN

Lý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Vị trí tương đối giữa hai đường thẳngCho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\) . Ta có: +) \(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ … [Đọc thêm...] vềLý thuyết phần các bài toán về mối quan hệ giữa hai đường thẳng thi ĐGNL ĐHQG HN

Lý thuyết phần phương trình đường thẳng thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Phương trình đường thẳng- Phương trình tham số của đường thẳng: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\left( {t \in \mathbb{R}} \right)\) ở đó \(M\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thuộc dường thẳng và \(\overrightarrow u  = \left( {a;b;c} \right)\)  là VTCP của đường thẳng. - Phương trình chính tắc của đường … [Đọc thêm...] vềLý thuyết phần phương trình đường thẳng thi ĐGNL ĐHQG HN

Lý thuyết phần các dạng toán viết phương trình mặt phẳng thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Phương trình mặt phẳng- Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n  = \left( {a;b;c} \right)\) làm VTPT là: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\) Muốn viết phương trình mặt phẳng ta cần xác định một điểm và một véc tơ pháp tuyến. - Phương trình đoạn … [Đọc thêm...] vềLý thuyết phần các dạng toán viết phương trình mặt phẳng thi ĐGNL ĐHQG HN

Lý thuyết phương trình mặt phẳng tư duy định lượng ĐGNL

27/03/2022 by Thầy Đồ Để lại bình luận

I. Véc tơ pháp tuyến và cặp véc tơ chỉ phương của mặt phẳng+) Véc tơ \(\overrightarrow n \left( { \ne \overrightarrow 0 } \right)\) là một véc tơ pháp tuyến (VTPT) của mặt phẳng \(\left( P \right)\) nếu giá của nó vuông góc với \(\left( P \right)\). +) Hai véc tơ không cùng phương \(\overrightarrow a ,\overrightarrow b \) được gọi là cặp véc tơ chỉ phương (VTCP) của \(\left( P … [Đọc thêm...] vềLý thuyết phương trình mặt phẳng tư duy định lượng ĐGNL

Lý thuyết phần tích có hướng và ứng dụng thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Tích có hướng của hai véc tơ- Định nghĩa: Cho các véc tơ \(\overrightarrow {{u_1}}  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}}  = \left( {{x_2};{y_2};{z_2}} \right)\). Tích có hướng của hai véc tơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) là véc tơ \(\overrightarrow u \), kí hiệu  \(\overrightarrow u  = \left[ {\overrightarrow {{u_1}} … [Đọc thêm...] vềLý thuyết phần tích có hướng và ứng dụng thi ĐGNL ĐHQG HN

Lý thuyết phần bài toán về điểm và vectơ trong không gian thi ĐGNL ĐHQG HN

27/03/2022 by Thầy Đồ Để lại bình luận

I. Tìm tọa độ điểm đặc biệtPhương pháp: Sử dụng định nghĩa điểm, điểm thuộc các trục tọa độ, điểm thuộc các mặt phẳng tọa độ và các tọa độ điểm đặc biệt như: - Trung điểm \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\) - Trọng tâm tam giác \(G( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + … [Đọc thêm...] vềLý thuyết phần bài toán về điểm và vectơ trong không gian thi ĐGNL ĐHQG HN

Sidebar chính

Bài viết mới

  • [LOP12.COM] Đề thi giữa HK2 môn Sinh học 12 năm 2022-2023 Trường THPT Lê Lợi
  • [LOP12.COM] Đề thi giữa HK2 môn Địa lí 12 năm 2022-2023 Trường THPT Lê Trung Kiên
  • [LOP12.COM] Đề thi giữa HK2 lớp 12 môn Toán năm 2022-2023 Trường THPT Trần Phú
  • [LOP12.COM] Đề thi giữa HK2 môn Tiếng Anh 12 năm 2022-2023 Trường THPT Lê Quý Đôn
  • [LOP12.COM] Đề thi thử THPT QG năm 2023 môn Hóa học Trường THPT Ngô Gia Tự

Chuyên mục

Trắc nghiệm online Lớp 12 - Bài học - Ôn thi THPT 2023.
Bản quyền - Chính sách bảo mật - Giới thiệu - Liên hệ - Sitemap.
Hocz - Học Trắc nghiệm - Sách toán - QAzdo - Hoc Tap VN - Giao vien Viet Nam

Login

Mất mật khẩu>
Đăng ký
Bạn không có tài khoản à? Xin đăng ký một cái.
Đăng ký tài khoản