Skip to content

Cộng đồng học tập lớp 12

  • Thi đấu
  • Sitemap

Cộng đồng học tập lớp 12

  • Home » 
  • Giải SGK Toán 12 – Cánh diều

Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 3 trang 93

By Admin Lop12.com 18/02/2025 0

Giải bài tập Toán 12 Bài tập cuối chương 3 trang 93

Bài 1 trang 93 Toán 12 Tập 1: Cho mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là Q1, Q2, Q3. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng:

A. 2Q2.

B. Q1 – Q3.

C. Q3 – Q1.

D. Q3 + Q1 – Q2.

Lời giải:

Đáp án đúng là: C

Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1.

Bài 2 trang 93 Toán 12 Tập 1: Bảng 22, Bảng 23 lần lượt biểu diễn mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình các tháng năm 2021 tại Hà Nội và Huế (đơn vị: độ C).

Bài 2 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

a) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Hà Nội và Huế.

b) Trong hai thành phố Hà Nội và Huế, thành phố nào có nhiệt độ không khí trung bình tháng đồng đều hơn?

Lời giải:

a)

* Hà Nội

– Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:

R = a6 – a1 = 31,8 – 16,8 = 15 (độ C).

-Từ Bảng 22 ta có bảng thống kê sau:

Bài 2 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 12.

+ Ta có: n4=124=3 mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q1=19,8+3−23⋅3=20,8 (độ C).

+ Ta có: 3n4=3⋅124=9> mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q3=28,8+9−84⋅3=29,55 (độ C).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:

∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C).

– Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:

x¯=2⋅18,3+3⋅21,3+2⋅24,3+1⋅27,3+4⋅30,312=297,612=24,8 (độ C).

Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:

s2=112∙ [2 ∙ (18,3 – 24,8)2 + 3 ∙ (21,3 – 24,8)2 + 2 ∙ (24,3 – 24,8)2+ 1 ∙ (27,3 – 24,8)2 + 4 ∙ (30,3 – 24,8)2] = 24912 = 20,75.

– Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: s=20,75≈4,56 (độ C).

* Huế

– Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:

R’ = a6 – a1 = 31,8 – 16,8 = 15 (độ C).

– Từ Bảng 23 ta có bảng thống kê sau:

Bài 2 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 12.

+ Ta có: n4=124=3 mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q‘1=19,8+3−12⋅3=22,8 (độ C).

+ Ta có: 3n4=3⋅124=9 mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q‘3=28,8+9−84⋅3=29,55 (độ C).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:

∆’Q = Q’3 – Q’1 = 29,55 – 22,8 = 6,75 (độ C).

– Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:

x‘¯=1⋅18,3+2⋅21,3+3⋅24,3+2⋅27,3+4⋅30,312=309,612=25,8 (độ C).

Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:

s‘2=112∙ [1 ∙ (18,3 – 25,8)2 + 2 ∙ (21,3 – 25,8)2 + 3 ∙ (24,3 – 25,8)2

+ 2 ∙ (27,3 – 25,8)2 + 4 ∙ (30,3 – 25,8)2] = 18912 = 15,75.

– Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: s‘=15,75≈3,97 (độ C).

b) Vì s’ ≈ 3,97 < s ≈ 4,56 nên thành phố Huế có nhiệt độ không khí trung bình tháng đồng đều hơn thành phố Hà Nội.

Bài 3 trang 93 Toán 12 Tập 1: Bảng 24 thống kê độ ẩm không khí trung bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị:

Bài 3 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau:

[75; 78,3), [78,3; 81,6), [81,6; 84,9), [84,9; 88,2), [88,2; 91,5).

b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu.

c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn?

Lời giải:

a) Từ Bảng 24, ta có các bảng thống kê sau:

Bài 3 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

b)

* Đà Lạt

– Khoảng biến thiên của mẫu số liệu ghép nhóm của Đà Lạt là:

R = 91,5 – 78,3 = 13,2 (

-Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Đà Lạt:

Bài 3 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 12.

– Ta có: n4=124=3 mà 2 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [81,6; 84,9) có s = 81,6; h = 3,3; n2 = 1 và nhóm 1 là nhóm [78,3; 81,6) có cf1 = 2.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q1=81,6+3−21⋅3,3=84,9 (%).

– Ta có: 3n4=3⋅124=9 mà 3 < 9 < 10. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 3 là nhóm [84,9; 88,2) có t = 84,9; l = 3,3; n3 = 7 và nhóm 2 là nhóm [81,6; 84,9) có cf2 = 3.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q3=84,9+9−37⋅3,3≈87,7 (%).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Đà Lạt là:

∆Q = Q3 – Q1 = 87,7 – 84,9 = 2,8 (

– Số trung bình cộng của mẫu số liệu ghép nhóm của Đà Lạt là:

x¯=2⋅79,95+1⋅83,25+7⋅86,55+2⋅89,8512=1028,712=85,725 (%).

Vậy phương sai của của mẫu số liệu ghép nhóm của Đà Lạt là:

s2=112∙ [2 ∙ (79,95 – 85,725)2 + 1 ∙ (83,25 – 85,725)2 + 7 ∙ (86,55 – 85,725)2 + 2 ∙ (89,85 – 85,725)2] = 111,622512 ≈ 9,3.

– Độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt là: s≈9,3≈3,05 (%).

* Vũng Tàu

– Khoảng biến thiên của mẫu số liệu ghép nhóm của Vũng Tàu là:

R’ = 84,9 – 75 = 9,9 (

– Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Vũng Tàu:

Bài 3 trang 93 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 12.

+ Ta có: n4=124=3 mà 5 > 3. Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 1 là nhóm [75; 78,3) có s = 75; h = 3,3; n1 = 5.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q‘1=75+35⋅3,3=76,98 (%).

+ Ta có: 3n4=3⋅124=9 mà 5 < 9 < 11. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 2 là nhóm [78,3; 81,6) có t = 78,3; l = 3,3; n2 = 6 và nhóm 1 là nhóm [75; 78,3) có cf1 = 5.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q‘3=78,3+9−56⋅3,3=80,5 (%).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Vũng Tàu là:

∆’Q = Q’3 – Q’1 = 80,5 – 76,98 = 3,52 (

– Số trung bình cộng của mẫu số liệu ghép nhóm của Vũng Tàu là:

x‘¯=5⋅76,65+6⋅79,95+1⋅83,2512=946,212=78,85 (%).

Vậy phương sai của của mẫu số liệu ghép nhóm của Vũng Tàu là:

s‘2=112∙ [5 ∙ (76,65 – 78,85)2 + 6 ∙ (79,95 – 78,85)2 + 1 ∙ (83,25 – 78,85)2]

= 50,8212 = 4,235.

– Độ lệch chuẩn của mẫu số liệu ghép nhóm của Vũng Tàu là: s‘=4,235≈2,06 (%).

c) Vì s’ ≈ 2,06 < s ≈ 3,05 nên thành phố Vũng Tàu có độ ẩm không khí trung bình tháng đồng đều hơn thành phố Đà Lạt.

Xem thêm các bài giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

§2. Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm

Bài tập cuối chương 3

§1. Nguyên hàm

§2. Nguyên hàm của mốt số hàm số sơ cấp

§3. Tích phân

§4. Ứng dụng hình học của tích phân

Tags : Tags 1. Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1   chi tiết)   Tập 2 (hay
Share
facebookShare on Facebook

Bài liên quan

Giải SGK Toán 12 Bài 2 (Cánh diều): Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm

Giải SGK Toán 12 Bài 1 (Cánh diều): Nguyên hàm

Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)

Giải SGK Toán 12 Bài 2 (Cánh diều): Nguyên hàm của mốt số hàm số sơ cấp

Giải sgk Toán 12 Chân trời sáng tạo | Giải bài tập Toán 12 Chân trời sáng tạo Tập 1, Tập 2 (hay, chi tiết)

Giải SGK Toán 12 Bài 3 (Cánh diều): Tích phân

Giải sgk Toán 12 Cánh diều | Giải bài tập Toán 12 Cánh diều Tập 1, Tập 2 (hay, chi tiết)

Giải SGK Toán 12 Bài 4 (Cánh diều): Ứng dụng hình học của tích phân

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 12 Kết nối tri thức | Giải bài tập Toán 12 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  2. Giải sgk Toán 12 Chân trời sáng tạo | Giải bài tập Toán 12 Chân trời sáng tạo Tập 1, Tập 2 (hay, chi tiết)
  3. Giải sgk Toán 12 Cánh diều | Giải bài tập Toán 12 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  4. Giải SGK Toán 12 Bài 1 (Cánh diều): Tính đơn điệu của hàm số
  5. Giải SGK Toán 12 Bài 2 (Cánh diều): Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  6. Giải SGK Toán 12 Bài 3 (Cánh diều): Đường tiệm cận của đồ thị hàm số
  7. Giải SGK Toán 12 Bài 4 (Cánh diều): Khảo sát sự biến thiên và vẽ đồ thị của hàm số
  8. Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 1 trang 45
  9. Giải SGK Toán 12 Chủ đề 1 (Cánh diều): Một số vấn đề về thuế
  10. Giải SGK Toán 12 Bài 1 (Cánh diều): Vectơ và các phép toán vectơ trong không gian
  11. Giải SGK Toán 12 Bài 2 (Cánh diều): Toạ độ của vectơ
  12. Giải SGK Toán 12 Bài 3 (Cánh diều): Biểu thức toạ độ của các phép toán vectơ
  13. Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 2 trang 82
  14. Giải SGK Toán 12 Bài 1 (Cánh diều): Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm
  15. Giải SGK Toán 12 Bài 2 (Cánh diều): Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm
  16. Giải SGK Toán 12 Bài 1 (Cánh diều): Nguyên hàm
  17. Giải SGK Toán 12 Bài 2 (Cánh diều): Nguyên hàm của mốt số hàm số sơ cấp
  18. Giải SGK Toán 12 Bài 3 (Cánh diều): Tích phân
  19. Giải SGK Toán 12 Bài 4 (Cánh diều): Ứng dụng hình học của tích phân
  20. Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 4 trang 42
  21. Giải SGK Toán 12 Chủ đề 2 (Cánh diều): Thực hành tạo đồng hồ Mặt Trời
  22. Giải SGK Toán 12 Bài 1 (Cánh diều): Phương trình mặt phẳng
  23. Giải SGK Toán 12 Bài 2 (Cánh diều): Phương trình đường thẳng
  24. Giải SGK Toán 12 Bài 3 (Cánh diều): Phương trình mặt cầu
  25. Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 5
  26. Giải SGK Toán 12 Bài 1 (Cánh diều): Xác xuất có điều kiện
  27. Giải SGK Toán 12 Bài 2 (Cánh diều): Công thức xác suất toàn phần. Công thức Bayes
  28. Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 6 trang 103
  29. Giải SGK Toán 12 (Cánh diều): THỰC HÀNH PHẦN MỀM GEOGEBRA

  • Quên mật khẩu
  • Login
  • Đăng ký
Copyright © 2025 Cộng đồng học tập lớp 12
Back to Top
Menu
  • Thi đấu
  • Sitemap
Tài khoản

  • Đăng ký
  • Lost your password ?