Giải SBT Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Bài 1 trang 84 SBT Toán 12 Tập 2: Cho hai biến cố A và B có P(A) = 0,4; P(B |) = 0,2; P(B | A) = 0,3. Tính P(A |)
Lời giải:
Do P(A) = 0,4 nên P() = 1 – 0,4 = 0,6.
Theo công thức xác suất toàn phần, ta có:
P(B) = P(A)P(B | A) + P()P(B |) = 0,4.0,3 + 0,6.0,2 = 0,24.
Từ đó, suy ra ta có P() = 1 – P(B) = 1 – 0,24 = 0,76.
Mặt khác, do P(B | A) = 0,3 nên P(| A) = 1 – 0,3 = 0,7.
Theo công thức Bayes, ta có: ≈ 0,368.
Bài 2 trang 84 SBT Toán 12 Tập 2: Bạn Minh có 2 hộp đựng thẻ. Hộp thứ nhất có 4 thẻ vàng và 1 thẻ đỏ. Hộp thứ hai có 6 thẻ vàng và 2 thẻ đỏ. Các thẻ có cùng kích thước. Minh chọn ngẫu nhiên từ hộp thứ nhất 2 thẻ và bỏ vào hộp thứ hai. Sau đó, minh lại chọn ngẫu nhiên từ hộp thứ hai ra 2 thẻ.
a) Tính xác suất để 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ.
b) Biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ, tính xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu.
Lời giải:
a) Ta có sơ đồ hình cây như sau:
Gọi A là biến cố “2 thẻ được chọn từ hộp thứ hai đều có màu đỏ” và B là biến cố “2 thẻ lấy ra từ hộp thứ nhất có cùng màu”.
Như vậy, từ sơ đồ hình cây, ta có xác suất 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ là P(A) =
b) Xác suất để 2 thẻ lấy ra từ hộp thứ nhất có cùng màu là P(B) = = 0,6.
Xác suất để 2 thẻ được chọn từ hộp thứ hai đều có màu đỏ, biết rằng 2 thẻ lấy ra từ hộp thứ nhất có cùng màu là P(A | B) =
Theo công thức Bayes, xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu, biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ là:
≈ 0,333.
Bài 3 trang 84 SBT Toán 12 Tập 2: Điều tra ở một khu vực cho thấy có 35
a) Tính xác suất tài xế đó sử dụng xe 7 chỗ.
b) Biết tài xế sử dụng xe 7 chỗ, tính xác suất đó là tài xế nam.
Lời giải:
a) Gọi A là biến cố :” Tài xế sử dụng xe 7 chỗ” và B là biến cố “Tài xế là nam”.
Do ở khu vực đó có 35
Do 12
P(A | B) = 0,25 và P(A |) = 0,12.
Theo công thức xác suất toàn phần, xác suất tài xế được chọn là nam, biết rằng tài xế đó được sử dụng xe 7 chỗ là:
≈ 0,795.
Bài 4 trang 84 SBT Toán 12 Tập 2: Một công ty công nghệ cung cấp hai phiên bản Basic và Pro của một phần mềm. Tỉ lệ người sử dụng hai phiên bản này lần lượt là 80
Chọn ngẫu nhiên một người sử dụng phần mềm của công ty.
a) Tính xác suất để người này mua bản cập nhật sau 1 năm sử dụng.
b) Biết người dùng mua bản cập nhật sau 1 năm sử dụng, tính xác suất người đó sử dụng phiên bản Basic ở năm đầu tiên.
Lời giải:
a) Gọi A là biến cố “Người dùng mua bản cập nhật sau 1 năm sử dụng” và B là biến cố “Người dùng sử dụng phiên bản Basic ở năm đầu tiên”.
Do tỉ lệ người sử dụng hai phiên bản Basic và Pro lần lượt là 80
P(B) = 0,8 và P() = 0,2.
Qua kết quả điều tra, có 30
Theo công thức xác suất toàn phần, xác suất người được chọn mua bản cập nhật sau 1 năm sử dụng là:
P(A) = P(B)P(A | B) + P()P(A |) = 0,8.0,3 + 0,2.0,5 = 0,34.
b) xác suất người được chọn sử dụng phiên bản Basic ở năm đầu tiên, biết rằng người dùng đó mua bản cập nhật sau 1 năm sử dụng là
≈ 0,706.
Bài 5 trang 84 SBT Toán 12 Tập 2: Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25
Lời giải:
Gọi A là biến cố “Một người ở trại dưỡng lão mắc bệnh tim mạch” và B là biến cố “Một người ở trại dưỡng lão hút thuốc”.
Do ở trại dưỡng lão đó, tỉ lệ người đó mắc bệnh tim mạch là 25
P(A) = 0,25 và P() = 1 – 0,25 = 0,75.
Gọi tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch là a (0 ≤ a ≤ 1) Do tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch nên P( B |) = a và P(B | A) = 2a.
Theo công thức xác suất toàn phần, xác suất một người ở trại dưỡng lão hút thuốc là
P(A | B) =
Bài 6 trang 84 SBT Toán 12 Tập 2: Khảo sát ở một trường đại học có 35
Lời giải:
Gọi A là biến cố “Một máy tính sử dụng hệ điều hành X” và B là biến cố “Một máy tính bị nhiễm virus”.
Do ở trường đại học đó có 35
Gọi tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X là a
(0 ≤ a ≤ 1). Do tỉ lệ máy tính bị nhiễm virus trong số các ấy không dùng hệ điều hành X nên P(B |) = a và P(B | A) = 4a.
Theo công thức xác suất toàn phần, xác suất một máy tính tại trường đại học đó bị nhiễm virus là
P(B) = P(A)P(B | A) + P()P(B |) = 0,35.4a + 0,65.a = 2,05a.
Theo công thức Bayes, xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó nhiễm virus là: ≈ 0,683.
Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm
1. Công thức xác suất toàn phần
Cho hai biến cố A và B với 0 < P(B) < 1. Khi đó
P(A) = P(B) ∙ P(A | B) + P() ∙ P(A | )
gọi là công thức xác suất toàn phần.
Chú ý: Công thức xác suất toàn phần cũng đúng với biến cố B bất kì.
Ví dụ 1. Giả sử tỉ lệ người dân của địa phương A nghiện thuốc lá là 20
Hướng dẫn giải
Gọi A là biến cố “Người dân được chọn bị bệnh phổi”; B là biến cố: “Người dân được chọn nghiện thuốc lá”.
Cần tính P(A).
Theo đề, ta có P(B) = 0,2
Lại có tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70
Theo công thức xác suất toàn phần ta có:
P(A) = P(B) ∙ P(A | B) + P()∙ P(A | ) = 0,2 ∙ 0,7 + 0,8 ∙ 0,15 = 0,26.
Vậy chọn ngẫu nhiên một người dân của địa phương A thì khả năng người đó bị bệnh phổi là 26
2. Công thức Bayes
Giả sử A và B là hai biến cố ngẫu nhiên thỏa mãn P(A) > 0 và 0 < P(B) < 1. Khi đó,
.
gọi là công thức Bayes.
Chú ý:
a) Công thức Bayes vẫn đúng với biến cố B bất kì.
b) Với P(A) > 0, công thức P(B | A) = cũng được gọi là công thức Bayes.
Ví dụ 2. Một nhà máy có hai phân xưởng I và II. Phân xưởng I sản xuất 45
a) Tính xác suất để sản phẩm đó bị lỗi.
b) Biết rằng sản phẩm được kiểm tra bị lỗi. Hỏi xác suất sản phẩm đó do phân xưởng nào sản xuất cao hơn?
Hướng dẫn giải
a) Gọi A là biến cố “Sản phẩm được kiểm tra bị lỗi” và B là biến cố “Sản phẩm được kiểm tra do phân xưởng I sản xuất”.
Do phân xưởng I sản xuất 45
Do tỉ lệ sản phẩm bị lỗi của phân xưởng I là 3
P(A | B) = 0,03 và P(A |) = 0,02.
Xác suất để sản phẩm được kiểm tra bị lỗi là
P(A) = P(B) P(A | B) + P() P(A |) = 0,45 ∙ 0,03 + 0,55 ∙ 0,02 = 0,0245.
b) Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sản xuất là P(B | A) = .
Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng II sản xuất là P(|A) = 1 – P(B | A) = .
Do nên nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sản xuất cao hơn sản phẩm đó do phân xưởng II sản xuất.
Xem thêm các bài giải SBT Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Phương trình đường thẳng trong không gian
Bài 3: Phương trình mặt cầu
Bài tập cuối chương 5
Bài 1: Xác suất có điều kiện
Bài 2: Công thức xác suất toàn phần và công thức Bayes
Bài tập cuối chương 6