1 of 2

Lý thuyết Bài tập cuối chương 3 – CTST

Tóm tắt lý thuyết

1.1. Hàm số và đồ thị

a) Hàm số. Tập xác định và tập giá trị của hàm số

+) Định nghĩa:

Giả sử x và y là hai đại lượng biến thiên, \(x \in D\)

Nếu với mỗi \(x \in D\), ta xác định được y duy nhất (\(y \in \mathbb{R}\)) thì ta có một hàm số.

+) Tên gọi: x là biến số, y là hàm số của x, D là tập xác định

\(T = \left\{ {y|x \in D} \right\}\) là tập giá trị của hàm số.

+) Ta thường kí hiệu \(f(x)\) là giá trị y tương ứng với x, nên hàm số thường viết là \(y = f(x)\)

Chú ý

+ Hàm số cho bởi công thức mà không chỉ rõ tập xác định thì

TXĐ của hàm số \(y = f(x)\) là tập hợp tất cả các \(x \in \mathbb{R}\) sao cho \(f(x)\) có nghĩa.

+ Một hàm số có thể được cho bởi hay nhiều công thức.

b) Đồ thị hàm số

Cho hàm số y = f(x) có tập xác định D

Trên mặt phẳng tọa độ Oxy, đồ thị (C) của hàm số là tập hợp tất cả các điểm M(x; y) với \({x \in D}\) và y = f(x).

Chú ý: Điểm \(M({x_M};{y_M})\) thuộc đồ thị hàm số \(y = f(x)\) khi và chỉ khi \({{x_M} \in D}\) và \({{y_M} = f({x_M})}\).

 

c) Hàm số đồng biến, hàm số nghịch biến

Với hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\), ta nói:

– Hàm số đồng biến trên khoảng \((a;b)\) nếu: \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) < f({x_2})\)

– Hàm số nghịch biến trên khoảng \((a;b)\) nếu: \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) > f({x_2})\)

Nhận xét:

Khi hàm số đồng biến (tăng) trên khoảng (a; b) thì đồ thị của nó có dạng đi lên từ trái sang phải. Ngược lại, khi hàm số nghịoh biển (giảm) trên khoảng (a; b) thì đồ thị của nó có dạng đi xuống từ trái sang phải.

1.2. Hàm số bậc hai

a) Hàm số bậc hai

+ Định nghĩa:

Hàm số bậc hai biến x là hàm số cho bởi công thức dạng \(y = f(x) = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R};a \ne 0.\)

+ Tập xác định: \(\mathbb{R}\)

b) Đồ thị hàm số bậc hai

+) Đồ thị hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) \((a \ne 0)\) là một parabol (P):

– Đỉnh \(S\left( { – \frac{b}{{2a}}; – \frac{\Delta }{{4a}}} \right)\)

– Trục đối xứng: đường thẳng \(x =  – \frac{b}{{2a}}\)

– Bề lõm: quay lên trên nếu \(a > 0\), quay xuống dưới nếu \(a < 0\)

– Cắt Oy tại điểm \((0;c)\)

Chú ý: Nếu PT \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1},{x_2}\) thì đồ thị hàm số \(y = a{x^2} + bx + c\) cắt trục hoành tại 2 điểm có hoành độ lần lượt là 2 nghiệm này.

+) Vẽ đồ thị

1) Xác định đỉnh \(S\left( { – \frac{b}{{2a}}; – \frac{\Delta }{{4a}}} \right)\)

2) Vẽ trục đối xứng d: \(x =  – \frac{b}{{2a}}\)

3) Tìm tọa độ giao điểm của đồ thị với trục tung (A(0;c)), trục hoành (nếu có).

Xác định \(B\left( {\frac{{ – b}}{a};c} \right)\) (là điểm đối xứng với A qua d)

4) Vẽ parabol đỉnh S, trục đối xứng d, đi qua các điểm tìm được.

c) Sự biến thiên của hàm số bậc hai

+) Bảng biến thiên

+) Kết luận:

 

\(a > 0\)

\(a < 0\)

Trên khoảng \(\left( { – \infty ;\frac{{ – b}}{{2a}}} \right)\)

Hàm số nghịch biến

Hàm số đồng biến

Trên khoảng \(\left( {\frac{{ – b}}{{2a}}; + \infty } \right)\)

Hàm số đồng biến

Hàm số nghịch biến

GTLN hoặc GTNN

Đạt GTNN bằng \(\frac{{ – \Delta }}{{4a}}\) tại \(x = \frac{{ – b}}{{2a}}\)

Đạt GTLN bằng \(\frac{{ – \Delta }}{{4a}}\) tại \(x = \frac{{ – b}}{{2a}}\)

Tập giá trị

\(T = \left[ {\left. {\frac{{ – \Delta }}{{4a}}; + \infty } \right)} \right.\)

\(T = \left( {\left. { – \infty ;\frac{{ – \Delta }}{{4a}}} \right]} \right.\)

d) Ứng dụng của hàm số bậc hai

+) Tầm bay cao và tầm bay xa

Chọn điểm \((0;{y_0})\) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời mặt vợt là:

\(y = \frac{{ – g.{x^2}}}{{2.{v_0}^2.{{\cos }^2}\alpha }} + \tan \alpha .x + {y_0}\)

Trong đó:

\(g\) là giá tốc trọng trường ( \( \approx 9,8\;m/{s^2}\))

\(\alpha \) là góc phát cầu (so với phương ngang của mặt đất)

\({v_0}\) là vận tốc ban đầu của cầu

\({y_0}\) là khoảng cách từ vị trí phát cầu đến mặt đất

Quỹ đạo chuyển động của cầu lông là một parabol.

 

 – Vị trí cao nhất tại đỉnh parabol, gọi là tầm bay cao;

– Khoảng cách từ nơi đứng phát cầu đến điểm cham đất, gọi là tầm bay xa.

+) Bài toán ứng dụng

Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biến phía sân đối phương thì lần phát cầu được xem là hợp lệ.

Bài tập minh họa

Câu 1: Vẽ đồ thị hàm số \(f(x) = 3x + 8\)

Hướng dẫn giải

\((C) = \{ M(x;3x + 8)|x \in \mathbb{R}\} \) là đường thẳng \(y = 3x + 8\)

Với \(x = 0\) thì \(f(0) = 3.0 + 8 = 8\), do đó A (0;8) thuộc đồ thị hàm số.

Với \(x =  – 2\) thì \(f(0) = 3.( – 2) + 8 = 2\) do đó B (-2;2) thuộc đồ thị hàm số.

Với \(x =  – 3\) thì \(f(0) = 3.( – 3) + 8 =  – 1\) do đó C (-3;-1) thuộc đồ thị hàm số.

Câu 2: 

a) Tìm khoảng đồng biến và nghịch biến của hàm số có đồ thị sau:

 

b) Xét tính đồng biến, nghịch biến của hàm số \(y = f(x) = 5{x^2}\) trên khoảng (2; 5).

Hướng dẫn giải

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thì có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thì có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thì có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

Câu 3: Tìm khoảng đồng biến, khoảng nghịch biến của hàm số \(y = 2{x^2} – 6x + 11.\) Hàm số này có thể đạt giá trị bằng -1 không? Tại sao?

Hướng dẫn giải

Đỉnh S có tọa độ: \({x_S} = \frac{{ – b}}{{2a}} = \frac{{ – ( – 6)}}{{2.2}} = \frac{3}{2};{y_S} = 2.{\left( {\frac{3}{2}} \right)^2} – 6.\frac{3}{2} + 11 = \frac{{13}}{2}.\)

Hay \(S\left( {\frac{3}{2};\frac{{13}}{2}} \right).\)

Vì hàm số bậc hai có \(a = 2 > 0\) nên ta có bảng biến thiên sau:

Hàm số đồng biến trên khoảng \((\frac{3}{2}; + \infty )\) và nghịch biến trên khoảng \(( – \infty ;\frac{3}{2})\)

Hàm số đạt giá trị nhỏ nhất bằng \(\frac{{13}}{2}\) khi \(x = \frac{3}{2}\)

Do đó hàm số không thể đạt giá trị bằng -1 vì \( – 1 < \frac{{13}}{2}.\)

Post a comment

Leave a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *